ALGEBRA HEART-TEST QUESTIONS (UNABRIDGED!)

by

Dr. J. Austin French

Test Questions for
Algebra by Heart
ALGEBRAHEART-TEST QUESTIONS(UNABRIDGED!)
by

Dr. J. Austin FrenchMultiple Choice Test Questions forAlgebra by Heartand forSupplementary Materials for Algebra by Heartby

Dr. J. Austin French
R.E.A.L. PUBLICATIONS
R.E.A.L. =
Righteousness Enhanced Accelerated Learning
"For He will finish the work, and cut it short inrighteousness: because a short work will the Lordmake upon the earth." Romans 9:28
R.E.A.L. PUBLICATIONS
\% DR. J. AUSTIN FRENCH 109 LA COSTA DRIVE GEORGETOWN, KY 40324 PHONE: 859-539-2463
EMAIL: questions@arealeducation.com
WEBSITE: www.arealeducation.com
Until further notice, permission is given to copy (January 2010).

EXPLANATION OF THIS BOOK

THIS IS A TWO-PART BOOK

PART I MULTIPLE CHOICE QUESTIONS THAT COME EXACTLY FROM ALGEBRA BY HEART

PART II
MULTIPLE CHOICE QUESTIONS THAT COME EXACTLY FROM SUPPLEMENTARY MATERIALS FOR ALGEBRA BY HEART (THIS BOOK CONTAINS WORKED HOMEWORK ASSIGNED IN ALGEBRA BY HEART)

SPECIAL THANKS TO:

God, for the eyes to see, wisdom, and graced fire to do this project.

My wife Belinda, for her oneness, love and support.

Alan McCowan and Winnie Bratcher, for seeing the need and availability of an online algebra course. This book is the missing ingredient that was needed to offer algebra online.

Georgetown College for providing funds for this project.

TRUTH GEM WHAT A TEST TESTS

(Deut. 8:2) And you shall remember that the Lord your God led you all the way these forty years in the wilderness, to humble you and test you to know what was in your heart, whether you would keep His commandments or not.

Many people consider a test to be a soul searching experience. Your soul is your mind, will, and emotions. Many consider a test as a brain dump to reveal what was in your brain at the time. To a certain extent a test does test what is in the brain. But what a test really reveals for those with eyes to see is that a test reveals what is in the heart.

Do you have a heart on fire to study wisely? A test will reveal that. Do you have a heart on fire to be so established in what was in the will of God to be learned and was taught clearly that you know it nonnervously instinctively? A test will reveal that.

Do you have a heart that for all your life you have never been faithful enough to study regularly, wisely only spurts right before a test? A test will reveal that type of heart too.

In the book Truth Gems for Teacher and Student you are told many wise ways to study what is in the will of God for you to learn. There are many formal and informal tests of your heart to see if you do the wisdom in that book. Some hide behind beliefs that they learn differently when in truth they continue to not-learn (treat as one word) in the same old way.

Philip Derber has mentioned that you have to keep retaking the tests of life until you pass them. Until there is a change of heart you can only expect the same results as long as you live. For things to get better you need to change your heart for the good.

God is in the heart changing, forgiveness business. You can change in an instant by His power. (Psalm 51:10) Create in me a clean heart, 0 God, and renew a steadfast spirit within me.

WHY PENCIL AND BIG PRINT?

To "make it plain" (Hab 2:2). It is my desire to make the things taught to be easily mentally digestible. There are some wonderful meals fixed with love for me by my wife that are so blessed and digestible that I joke that the stomach can be by-passed and the food just be put into me intravenously! This book is intended to be like that for the mind...immediately absorbed by the mind.

This all began when I was teaching a class with computer generated notes. I then switched to pencil and big print. The response was unanimous; they liked the pencil and big print notes much better. It was said that when they did their homework, they had to recopy the computer generated notes to understand better, but with the pencil and big print notes they did not have to recopy them to understand.

A secondary reason for pencil and big print is that many texts are encyclopedic...containing far more information than can and needs to be consumed to know algebra excellently. So I go for the jugular and put in no more and no less than is needed to thrive mathematically. Hence, this is a micropedia, not an encyclopedia!

You are seeing the note-taking style that served me well in getting a math Ph.D. and beyond.

Another reason I use pencil and big print is that I believe there is an anointing of clarity that comes with these notes and it is known that the "anointing teaches you" (1 Jn 2:27).

Rather than this being a second rate, antiquated learning system, I am giving you absolutely the best I know for you to learn with wisdom and joy. Drink it in.

A

MIGHTY MICROPEDIA

FROM THE
GENRE OF

MUSTARDSEEDAPEDIAS

MIGHTY MICROPEDIAS BY R.E.A.L. EDUCATION

(See www.arealeducation.com)
TRUTH GEMS FOR TEACHER AND STUDENT by Dr. J. Austin French. This micropedia consist of 53 Truth Gems from the Word of God directed at teaching and learning. Each Truth Gem and its explanation take one page. Since God is the Most High, this means His teachings are the most high teachings. No one knows better than the Creator how man was made, what he needs, what is the best way to teach man, and what is the best way for man to learn. Many of these truth gems start out each teaching session in the Math by Heart trilogy described below.

ALGEBRA BY HEART by Dr. J. Austin French. This collection of two mighty micropedias consists of a micropedia text, a micropedia of supplementary materials, and DVDs of 53 teaching sessions. Both micropedias are free on the web or can be ordered on the web in paper copy or on one CD. The DVDs can be purchased from the web. This is a College Algebra course, which means it is a strong Algebra II course for high school. This is not what is called Intermediate Algebra (=Algebra I in high school) in some colleges.

ALGEBRA HEART-TEST OUESTIONS (UNABRIDGED!) by Dr. J. Austin French. This is a collection of 1131 multiple choice questions with answers. This tests the entire books Algebra by Heart and Supplementary Materials for Algebra by Heart. The questions come exactly from the texts. Each question has a reference to the location on the specific page of the text that the question covers (hope for fruitful study).

CALCULUS I BY HEART by Dr. J. Austin French. This collection of two mighty micropedias consists of a micropedia text, a micropedia of supplementary materials, and DVDs of 38 teaching sessions. This is a rigorous first course in calculus. It is a first college calculus course. It can be used for high school students who have finished Algebra I, Algebra II, and have had some trigonometry (trigonometry is taught in pre-calculus or advanced math courses in high school). The topic is differential calculus. Both micropedias are free on the web or can be ordered on the web in paper copy or on one CD. The DVDs can be purchased from the web.

LOGIC FOR UNDERSTANDING MATHEMATICS by Dr. J. Austin French and Dr. Earl Dennis. This collection of two mighty micropedias consists of a micropedia text, a micropedia of supplementary materials, and DVDs of 31 detailed teaching sessions. The mystery of how to do proofs is revealed. Logic is taught and then that connection to math proof is made plain. Proofs are illustrated in the area of elementary set theory. It is for the advanced high school student through college. Math maturity to have done excellently in Algebra II is the only recommended prerequisite background. Both micropedias are free on the web or can be ordered on the web in paper copy or on one CD. The DVDs can be purchased from the web.

EXPLANATION OF TESTQUESTION FORMAT

Above each question is a notation like (7108B). That means that this question comes from page 7-108 of the text Algebra II by Heart, and the B stands for Bottom of the page (T stands for Top and M stands for Middle). In understanding what is meant by $7-108$, this means the $108^{\text {th }}$ page of the text, Algebra II by Heart, and the $108^{\text {th }}$ page of the text is in chapter 7.

The answers are in the back of this testquestion book.

This test-question book is a component in a total immersion in clarity concept. The student is to read the text, Algebra II by Heart. DVDs teach the text. Students are then tested over the text. It is the testing-over-what-you-were-taught concept. This concept injects great hope in knowing what to study to prepare for the test and knowing the test will fairly test what you studied...so study in hope.

TABLE OF CONTENTS

PART I
QUESTIONS FROM ALGEBRA BY HEART 0-323
ANSWERS FOR QUESTIONS IN PART I A1-A22

PART II
QUESTIONS FROM SUPPLEMENTARY MATERIALS FOR ALGEBRA BY HEART ... SM1-SM99 ANSWERS FOR QUESTIONS IN PART II . ASM1-ASM3

PART I

MULTIPLE CHOICE QUESTIONS THAT COME EXACTLY FROM ALGEBRA BY HEART

$$
N^{(2-6(5)}=\{1,2,3, \ldots\}
$$

(1) The $\operatorname{set}^{\text {(}}\{x \mid x \in N$ and $x<3\}=$
a) $\{0,1,2\}$
b) $\{1,2,3\}$
c) $\{1,2\}$
d) $\{0,1,2,3\}$
e) $\{0 .,-1,0,1,2\}$
f) None of these.
(2) $\stackrel{(2-8 T)}{A}$ repeating decimal (like 4.232323...) is a
g) rational number n) Irrational number k) none of these.
(3) ${ }^{(2-8 B)}$ Change $x=4.1345345 \ldots=4.1 \overline{345}$ to a fraction of integers:

$$
\begin{aligned}
10000 x & =41345.345345 \ldots \\
-10 x & =-41.345345 \ldots
\end{aligned}
$$

subtracting and solving for x gives $x=$
m) $\frac{41304}{9999}$
p) $\frac{41304.345}{9990}$
s) $\frac{41304 . \overline{345}}{9990}$
w) $\frac{41304}{9990}$
z) None of these
(2-7m)
(4) The number $\frac{0}{5}$ equals
a) 0
b) undefined
c) none of these
$(2-7 B)$
(5) The number $\cdot \overline{23}$ equals
a) $\frac{23}{100}$
b) $.232323 \ldots$
c) none of these
(2-7m)
(6) A fraction of the form $\frac{a}{b}$ where a is an integer and b is an integer and $b \neq 0$ is a
a) rational number
b) Irrational number
c) none of these.
(7) $(2-7 T)$ The set $\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$ is the set
d) of positive integers
e) of natural numbers
f) of integers
g) of rational numbers
h) of irrational numbers
m) none of these
(8) Which of the following is an irrational number?
a) -3.4
b) $\sqrt{2}$
c). $232323 . \ldots$
d) $\frac{2}{3}$
e) None of these
(9) $\{1,2\}$ is a subset of which of the following. $\{1,2\} \subseteq$
f) $\{1,2,3,4\}$
g) $\{3,4\}$
h) $\{2,3,4\}$
k) $\{0,1,4\}$
m) None of these.
(10) What is the only set that $\frac{2}{3}$ is $\mathrm{In}^{(2-12}$?
n) N
q) Q
w) ω
y) Ir
(11) Let $\begin{aligned} & (2-13 B) \\ & \text { Let }\end{aligned}=\{2,3,4,5\} \quad B=\{3,5,6,7\} \quad A \cap B=$
a) $\{3,5\}$
b) $\{2,3,4,5,6,7\}$
c) $\{2,4\}$
d) $\{3,4,5\}$
e) None of these
(2-9m)
(12) A real number is a number that is either
a) a whole number or a rational number.
b) a negative integer or a rational number.
c) a rational number and a repeating decimal.
d) a rational number or an irrational number.
$(2-10 \mathrm{~m})$
(13) Which of the following is an element of $\{1,2\}$?
e) $\{2\}$
f) 2
g) $\{1,2\}$
n) none of these.
(14) Which of the following is a subset of $\{1,2\}$?
m) $\{2\}$
p) 2
w) none of these.
(2-13T)
(15) For the set definitions $\{x \mid x \in N$ and $x<3\}=$ $\{y \mid y \in N$ and $y<3\}=\{z \mid z \varepsilon N$ and $z<3\}$,
x, y, and z are called
a) constants
b) Irrational numbers
c) dummy variables.
d) the null set
e) none of these
(2-13B)
(16) Let $A=\{2,3,4,5\}$ and $B=\{3,5,6,7\}$ $A \cap B=$
f) $\{2,3,4,5,6,7\}$
g) $\{3,5\}$
h) $\{2,4\}$
m) none of these
(2-14B)
(17) State completely the property: $2(x+3 y)=(x+3 y) \cdot 2$
p) distributive property
u) commutative property of multiplication
x) commutative property of addition
z) none of these
(2-15m)
(18) State completely the property:

$$
5+(3+x)=5+(x+3)
$$

a) associative property of adelition
b) distributive property
c) commutative property of multiplication
d) commutative property of addition
e) none of these
(2-15m)
(19) State completely the property:

$$
5+(3(x y)+2)=5+((3 x) y+2)
$$

f) commutative property of multiplication
g) distributive property
K) commutatue property of addition
m) associative property of multi, plication
p) associative property of addition
w) none of these
(20) what property is illustrated by $x \cdot 1=x$?
a) additive identity
b) multiplicative identity
c) commutativity
d) none of these.
(2-15B)
(21) What property is illustrated by: $x+0=x$
a) additive identity
b) multiplicative identity
c) additive inverse
d) multiplicative inverse
e) none of these
$2^{(2-16 T)}$
(22) According to the distributive property $a(b+c)=$
f) $a(c+b)$
g) $(b+c) a$
h) $(c+b) a$
m) $a b+a c$
p) none of these
(2-16M)
(23) According to the distributive property $(e+f)(x+y)=$
a) $(f+e)(y+x)$
b) $(e+f) x+(e+f) y$
c) $(x+y)(e+f)$
d) $(f+e)(x+y)$
e) none of these.
(2-16B)
(24) Which of the following is NOT the way $-x$ can be read?
$f)$ the reciprocal of x
g) minus x
h) the negative of x
m) the opposite of x
p) none of these
(2-16B)
(25) which of the following is the multiplicative inverse of x when $x \neq 0$.
q. $\frac{1}{x}$
s) $-x$
w) 1
$x)$ none of these.
(2-16B)
(26) Which of the following is BAD?
a) $\frac{0}{1}$
b) $\frac{1}{0}$
c) both a) and b)
d) none of these.
(27) TRUE OR FALSE: $\frac{a}{b}=a \cdot \frac{1}{b}$
t) TRUE
f) FALSE
$(2-17 \mathrm{M})$
(38) TRUE OR EALSE: $a-b=a+(-b)$
t) TRUE
f) FALSE
(2-17m)
(29) The multiplicative inverse of $\frac{2}{3}$ is
e) $-\frac{2}{3}$
f) 0
g) 1
h) $\frac{3}{2}$
$m)$ none of these
(3-19T)
(30) Which of the following is equal to $-a^{?}$? $-a=$
p) $\frac{1}{a}$
s) $-1 \cdot a$
w) $-(-a)$
x) 0
z) none of these
(3-19 T)
(31) Which of the following is equal to $-(a-b) ?-(a-b)=$
a) $-a-b$
b) $-(b-a)$
c) $b-a$
d) $-b-a$
e) none of these
(3-19m)
(32) Which of the following is equal to $-\frac{a}{b}$? $-\frac{a}{b}=$
F) $\frac{-a}{b}$
G) $\frac{b}{a}$
H) $\frac{1}{\frac{a}{b}}$
J) none of these.
$33(3-19 \mathrm{~m})$
(33) which of the following is equal to $\frac{a}{-b} ? \frac{a}{-b}=$
k) $-\frac{b}{a}$
L) $\frac{-b}{-a}$
M) $\frac{-a}{b}$
p) $\frac{-a}{-b}$
R) none of these
(3-19B)
(34) Which of the following is a correct reasoning sequence?
s) $\frac{x-y}{y-x}=\frac{x-y}{y-x}=\frac{1}{1}=1$
T) $\frac{x-y}{y-x}=\frac{x-y}{y-x}=\frac{1-1}{1-1}=\frac{0}{0}=0$
u) $\frac{x-y}{y-x}=\frac{x-y}{-(x-y)}=\frac{x-y}{-(x-y)}=\frac{1}{-1}=-1$
w) $\frac{x-y}{y-x}=\frac{x-y}{-(x-y)}=\frac{x-y}{-(x-y)}=\frac{1}{1}=1$
$x)$ none of these.
(3-19B)
(35) Suppose $b=-5$. which of the following is true
A) $-b$ is negative
B) $-b=5$
C) $-b=-5$
D) none of these
$3(3-20 \mathrm{M})$
(36) SUPPOSE $x<y$. Which of the following is true?
E) $y>x$
F) It is possible that $x=y$.
G G) Mo ne of these.
(3-21B)
(37) Absolute value: Suppose $a<0$. which is true?
H) $|a|=-a$
J) $|a|=a$
k) $|a|=0$
M) None of these.
(38) $\quad(3-22 M)$ Absolute value: Suppose $a<-2$ and $b>7$. Which is true?
N) $|a \cdot b|=a \cdot b$

$$
\underbrace{\text { neg: neg }}_{\text {pos }}
$$

p) $\left|\begin{array}{c}\text { pos } \\ a \cdot b\end{array}\right|=a \cdot b$

$$
\underbrace{\text { neg } \cdot \text { pos }}_{\text {neg }}
$$

R) $|a \cdot b|=-a \cdot b$
$\underbrace{\text { neg-pos }}_{\text {neg }}$
s) None of these
(39) Absolute value: Suppose $a<-2$ and $b>7$. Which is True?
T) $\left|\begin{array}{c}n=g-p o s \\ a-b\end{array}\right|=a-b$

$$
\underbrace{\text { neg -pos }}_{\text {pos }}
$$

4) $|a-b|=a-b$

$$
\underbrace{\text { neg-pos }}_{\text {neg }}
$$

w) $\left.|a-b|=\underbrace{\left\lvert\, \begin{array}{c}\text { neg }+ \text { pos }\end{array}\right.}_{\text {pos }} \right\rvert\,=a+(-b)$

$$
\text { x) }|a-b|=\underbrace{\left|\begin{array}{c}
\text { neg }+n e g \\
a+(-b)
\end{array}\right|}_{n e g}=-(a-b)=b-a
$$

$(3-22 A, T)$
(40) Suppose $L=$ Left and $R=$ Right an θ $L<R$

A) Left - Right is negative.
B) Left - Right is positive
C) It is impossible to determine whether Left-Right is positive or negative without Knowing the exact values for L and R.
D) None of these.
$(3-22 A, B)$
(41.) Suppose

Which of the following is true?
E) $|p+3|=p+3$

$$
\underbrace{\text { neg }+ \text { pos }}_{\text {pos }}
$$

F) $|\underset{\underbrace{L+R}}{p+3}|=p+3$
G) $|p+3|=|\underset{\text { Leg }}{\text { neg }}| \underset{p}{-(-3)} \mid=p+3$
H) $|p+3|=|\underset{L-R}{\substack{-R}}|=-(p+3)=-p-3$
I) None of these
(3-23m)
(42.) The distance between -2 and 1 is equal to

丁) $|-2-1|=|-3|=-(-3)=3$
k) $-2-1=-3$
L) $|-2+1|=|-1|=-(-1)=1$
M) None of these
(3-24T)
(43) Which of the following is true?
N) $5+6 \div 2 \cdot 4=11 \div 2 \cdot 4=\frac{11}{2} \cdot 4=\frac{44}{2}=22$
Q) $5+6 \div 2 \cdot 4=5+3 \cdot 4=8 \cdot 4=32$
p) $5+6 \div 2.4=5+3.4=5+12=17$
s) $5+6 \div 2 \cdot 4=5+6 \div 8=5+\frac{6}{8}=5+\frac{3}{4}=\frac{20+3}{4}=\frac{23}{4}$
T) None of these.
(3-24m)
(44.) which of the following is true?
E) $5-2 x=3 x$
N) $5-2 x \neq 3 x$
(3-26m)
(45.) $\frac{3(x-2 y)+5 y}{2(y+2 x)-y-7 x}$ equals which of the following?
A) $\frac{3}{2}$
B) $\frac{5}{-7}$
C) 1
D) -1
E) 3
E) None of these.
(3-26N)
(46) Which of the following is true?
G) $\frac{3 x-y}{y-3 x}=1$
H) $\frac{3 x-y}{y-3 x}=\frac{3 x-y}{-(y-3 x)}$
I) $\frac{3 x-y}{y-3 x}=\frac{3 x-y}{-(3 x+y)}$
K) None of $G), H$), and I)
(4-27 T)
(47) $(-3)^{2}=$
L) 9
M) -9
P) None of L) and M)
$(4-27 B)$
(48) $-3^{2}=$
Q) 9
R) -9
S) None of Q) and R)
(4-28M)
(49) Which of the following is true about $-2^{3}-(3+(-5))^{2}$
T) $-2^{3}-(3+(-5))^{2}=-2^{3}-\left(3^{2}+(-5)^{2}\right)$
U) $-2^{3}-(3+(-5))^{2}=-2^{3}-\left(3^{2}-5^{2}\right)$
w) $-2^{3}-(3+(-5))^{2}=-2^{3}-3^{2}-5^{2}$
x) $-2^{3}-(3+(-5))^{2}=-2^{3}-(-2)^{2}$
z) None of $T 1,(U), W$), and X).
($4-2813$)
(50) $(-7)^{0}=$
A) 1
B) -7
C) -1
D) 7
E) None of A), B), C), an (D).
(4-29T)
(51) Which is true about $\frac{1}{a^{n}}$? $\frac{1}{a^{n}}=$
F) $-a^{n}$
G) $-1 a^{n}$
H) a^{-n}
I) None of $F), G)$, and H)
(4-29T)
(52) Which of the following is true about $\left(\frac{1}{2}\right)^{-3}$?
J). $\left(\frac{1}{2}\right)^{-3}=-8$
k) $\left(\frac{1}{2}\right)^{-3}=-\frac{1}{8}$
L) $\left(\frac{1}{2}\right)^{-3}=8$
m) $\left(\frac{1}{2}\right)^{-3}=-8$
P) None of 2$), K), L$), and M
(4-29m)
(53) Which of the following is true about $a^{m} \cdot a^{n}$?
Q) $a^{m} \cdot a^{n}=a^{m n}$
R) $a^{m} \cdot a^{n}=\left(a^{m}\right)^{n}$
5) $a^{m} \cdot a^{n}=\left(a^{n}\right)^{m}$
T) $a^{m} \cdot a^{n}=a^{m+n}$
U) None of Q), R), S), and T).
(4-29M)
(54) Which of the following is true about $\frac{a^{m}}{a^{n}} ? \frac{a^{m}}{a^{n}}=$
A) a_{n-m}^{m+n}
B) a^{n-m}
C) a^{m-n}
D) $a^{m(-n)}$
E) None of $A), B), C)$, and D).
$(4-30 T)$
(55) Which of the following is true about $\left(a^{m}\right)^{n}$? $\left(a^{m}\right)^{n}=$
F) a^{m+n}
G) $a^{\frac{m}{n}}$
H) $a^{\frac{n}{m}}$
I) a^{n-m}
K) None of F.,$~ G), H$), and I).
(4-30m)
(56) Suppose m is an integer. $(a b)^{m}=$
L) $a^{m}+b^{m}$
M) $(b a)^{-m}$
P) $a^{m} b^{m}$
Q) None of L) , M), an (P).
(4-30 M)
(57) Suppose n is an integer. $\frac{a^{n}}{b^{n}}=$
R) $-a^{n} b^{n}$
S) $(a b)^{-n}$
T) $[a(-b)]^{n}$
U) $\left(\frac{a}{b}\right)^{n}$
X) None of R) , S) , T), and U).
(4-31T)
(58) Which derivation is correct about $\left(\frac{5 x^{2}}{3 y^{-3}}\right)^{4}$?
A) $\left(\frac{5 x^{2}}{3 y^{-3}}\right)^{4}=\frac{\left(5 x^{2}\right)^{4}}{\left(3 y^{-3}\right)^{4}}=\frac{5 x^{8}}{3 y^{-12}}$
B) $\left(\frac{5 x^{2}}{3 y^{-3}}\right)^{4}=\frac{\left(5 x^{2}\right)^{4}}{\left(3 y^{-3}\right)^{4}}=\frac{5 x^{6}}{3 y^{1}}$
C) $\left(\frac{5 x^{2}}{3 y^{-3}}\right)^{4}=\frac{\left(5 x^{2}\right)^{4}}{\left(3 y^{-3}\right)^{4}}=\frac{5^{4} x^{6}}{3^{4} y^{1}}$
D) $\left(\frac{5 x^{2}}{3 y^{-3}}\right)^{4}=\frac{\left(5 x^{2}\right)^{4}}{\left(3 y^{-3}\right)^{4}}=\frac{5^{4} x^{8}}{3^{4} y^{-12}}$
E) None of A) , B) , C), and D).
(4-31B)
(59) Which derivation is correct about $\left(\frac{2 x^{-4} y^{3}}{8 x^{5} y^{10}}\right)^{2}$?
F) $\left(\frac{2 x^{-4} y^{3}}{8 x^{5} y^{10}}\right)^{2}=\frac{4}{x^{9} y^{7}}$
G) $\left(\frac{2 x^{-4} y^{3}}{8 x^{5} y^{10}}\right)^{2}=\frac{1}{4 x^{9} y^{7}}$
H.) $\left(\frac{2 x^{-4} y^{3}}{8 x^{5} y^{10}}\right)^{2}=\left(\frac{1}{4 x^{9} y^{7}}\right)^{2}$
I) $\left(\frac{2 x^{-4} y^{3}}{8 x^{5} y^{10}}\right)^{2}=\left(\frac{1}{4 x^{1} y^{13}}\right)^{2}$
(k) None of $F), G), H$), and I).
(4-32M)
(60) $\left(\frac{2 x^{3} y^{-5}}{16 x^{-7} y^{-10}}\right)^{2}$ is equal to which of the following?
L) $8 x^{10} y^{5}$
m) $\frac{x^{10} y^{5}}{8}$
N) $\left(8 x^{10} y^{5}\right)^{2}$

日) $\left(\frac{x^{10} y^{5}}{8}\right)^{2}$
p) $\left(\frac{x^{-4} y^{-15}}{8}\right)^{2}$
R) $\left(8 x^{-4} y^{-15}\right)^{2}$
S) None of $(L), M), N), \theta), P), R)$.
$(4-32 \mathrm{M})$
(61) $\left(\frac{x^{10} y^{5}}{2^{3}}\right)^{2}$ is equal to which of the following?
T) $2^{6} x^{20} y^{10}$
U) $2^{5} x^{12} y^{7}$
w) $2^{-5} x^{12} y^{7}$
x) $2^{-6} x^{20} y^{10}$
z) None of T) $(U), \omega)$, and X).
(4-32B)
22
(62) $\frac{1}{9}$ is equal to which of the following
A) 3^{-2}
B) 3^{2}
C) -3^{2}
D) None of A) , B), and C).
(4-35M)
(63) 323.4 in scientific notation is
E) 3.234×10^{-2}
F) 3234.0×10^{1}
G) 3234.0×10^{-1}
H) None of these
(4-35B)
(64)
.00045 in scientific notation is
J) 4.5×10^{3}
K) 4.5×10^{4}
L) 4.5×10^{-4}
M) 45.0×10^{-5}
N) None of (J), K), L), and M).
(65) Which of the following is notation for $x^{\frac{1}{n}}$?
p) $\sqrt{x^{n}}$
Q) $\sqrt[\frac{1}{n}]{x}$
R) $\sqrt{x^{1 / n}}$
S) $\sqrt[n]{x}$
T) None of $P), Q), R)$, and S).
(4-36B)
(66)
$8^{\square}=2$. For this to be correct, fill in the
\square with
u) 3
w) -3
x) $1 / 3$
y) $-1 / 3$
z) None of (U), ω, , x), and y).
(4-36B)
(67) Why is $\sqrt[5]{32}=2$?
A) Since $2^{5}=32$
B) Since $2^{1 / 5}=32$
C) Since $32^{5}=2$
D) None of $A), B), a n \theta$).
(4-37T)
24
(68) When n is an EVEN positive integer and $x \geq 0$ and $\sqrt[n]{x}=b$, then
$E) b$ is undefined
F) b must be greater than or equal to 0
G) b can be negative under certain circumstances.
H) $\sqrt[n]{x}$ is undefined
I) NONE of E), F), G), and H).
(4-37M)
(69) $\sqrt[4]{16}=$
J) 2
k) -2
L) 4
M) None of J, k), an (L).
(4-37B)
(70) \sqrt{x} means
N) x^{2}
P) $\frac{1}{2} \sqrt{x}$
Q) $\sqrt[2]{x}$
R) None of N) P), Q).
$(4-37 B)$
(71) $-\sqrt{25}=$
S) 5 (and -5 is not an acceptable alternate answert:
T) Either 5 or -5 are equally acceptable answers.
4) 25^{2}
$\omega)$ None of S), T), and (U).
(72) $\sqrt[4]{\frac{1}{16}}=$
A) $\frac{1}{4}$
B) 2
C) $\left(\frac{1}{2}\right)^{4}$
D) None of A), B), an $(C$)
(73) $^{(4-38 m)} \sqrt{x^{2}}$
E. Is always equal to x.
F. $-x$ when x is positive.
G. $|x|$
H. None of E), F), and G).

$$
(4-39 T)
$$

(74) Suppose all component parts are defined and m and n are integers, then $a^{\frac{m}{n}}=$
J) $\left(a^{\frac{1}{m}}\right)^{n}$
k) $\left(a^{m}\right)^{n}$
L) $\left(a^{\frac{1}{n}}\right)^{m}$
M) None of these
$(4-39 T) \quad 8^{2 / 3}=$
(75) N) $\left(8^{2}\right)^{3}$
P) $\left(8^{3}\right)^{2}$
Q) $\left(8^{1 / 3}\right)^{1 / 2}$
R) $\left(8^{1 / 3}\right)^{2}$
S) None of $N(P), Q)$, and R)
(46) $(-27)^{-\frac{4}{3}}=$
T) $\frac{1}{\left[(-27)^{1 / 3}\right]^{4}}$
U) $\frac{1}{\left[(-27)^{1 / 4}\right]^{3}}$
w) $\left[(-27)^{1 / 3}\right]^{4}$
x) None of T), U), and ω).
(77) Which is true about $(-16)^{(4-39 \mathrm{~m})}$?
(77) Which is true about $(-16)^{(4-39 \mathrm{~m})}$?
A) it equals -8 .
B) it equals +8
C) it equals -12
D) it is not defined.
E.) None of A) , B) , C), and D).
(4-39 $1, \beta$)
(78) True or False: $8^{\frac{2}{3}}=\left(8^{\frac{1}{3}}\right)^{2}$ and also $8^{2 / 3}=\left(8^{2}\right)^{1 / 3}$
T) True
F) False
$(4-40 \mathrm{~m})$
(79) $\sqrt[5]{x^{15}}=$
G) x^{3}
H) x^{75}
J) $\left|x^{3}\right|$
K) None of G), H), and J)
(80) $\sqrt[4]{(4-40 m)} x^{12}=$
L) x^{3}
m) x^{48}
P) $\left|x^{3}\right|$
Q) None of L (,M), and P).
(4-41T)
(81) Which of the following is true?
R) It is always true $\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b}$.
S) It is not always true that $\sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b}$, like when $a=-16$ an $\theta \quad b=-81$ and $n=4$; in. that case $6=\sqrt[4]{(-16)(-81)} \neq \sqrt[4]{-16} \sqrt[4]{-81}$ UNDEFINED
$(4-4 \mid 13)$
(82) True or False: It is always true that

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

T) True
F) False
(4-42m)
(83) $\frac{a}{b}+\frac{c}{b}=$
T) $\frac{a b+c b}{b}$
U) $\frac{a+c}{b+b}$
w) $\frac{a+c}{b}$
X) None of T), U), and ω).
(4-42M)
(84) $\frac{a}{b} \cdot \frac{c}{d}=$
A) $\frac{a d+b c}{b d}$
B) $\frac{a d \cdot c b}{b d}$
c) $\frac{a c}{b d}$
D) None of A), B), and
C).
$(4-42 B)$
(85) $\frac{a}{b}+\frac{c}{d}=$
E) $\frac{a+c}{b+d}$
F) $\frac{a d+b c}{b d}$
G) $\frac{a d+b c}{b+d}$
H) None of $E), F$) and G).
(86) $(4-42 B) \quad \frac{a}{b}-\frac{c}{d}=$
J) $\frac{a-c}{b-d}$
K) $\frac{a d-b c}{b d}$
L) $\frac{a d-b c}{b-d}$
m) None of $\delta), k)$, and L).
(87) $\frac{\frac{a}{b}}{\frac{c}{d}}=30$
P) $\frac{a d}{b c}$
Q) $\frac{a c}{b d}$
R) None of P) and Q).

888 $^{(4-43 m)} \frac{2}{5}-\frac{3}{7}=$
s) $-\frac{1}{2}$
T) $\frac{1}{35}$
u) $\frac{-1}{12}$
w) None of 5), T) and U).
(89) $(4-43 M) \frac{\frac{2}{5}}{\frac{8}{7}}=$
A) $\frac{16}{35}$
B) $\frac{7}{20}$
C) $\frac{2.8+5.7}{7.5}$
D) None of A),B), an θ ().
$(4-43 T)$
90

$$
5 \frac{2}{3}=
$$

E) $\frac{10}{3}$
F) $\frac{12}{3}$
G). $\frac{30}{3}$
H) None of these
$(4-46 M)$
(91) $\sqrt[3]{5 x^{6} y^{7}}=$
J) $5 x^{2} y^{2} \sqrt{y}$
k) $5 x^{2} y^{2} \sqrt[3]{y}$
L) $x^{2} y^{2} \sqrt[3]{5}$
M) $x^{2} y^{2} \sqrt[3]{5 y}$
P) None of $j, k), L$), and M)
(4-46B)
(92) Which derivation of rationalizing the denominator is correct?
Q) $\frac{1}{\sqrt[3]{x}}=\frac{1}{\sqrt[3]{x}} \cdot \frac{\sqrt[3]{x^{2}}}{\sqrt[3]{x^{2}}}=\frac{\sqrt[3]{x^{2}}}{\sqrt[3]{x^{3}}}=\frac{\sqrt[3]{x^{2}}}{x}$
R) $\frac{1}{\sqrt[3]{x}}=\frac{1}{\sqrt[3]{x}} \cdot \frac{\sqrt{x^{2}}}{\sqrt{x^{2}}}=\frac{\sqrt{x^{2}}}{\sqrt[3]{x^{3}}}=\frac{\sqrt{x^{2}}}{|x|}$
S) $\frac{1}{\sqrt[3]{x}}=\frac{1}{x^{1 / 3}}=-x^{1 / 3}$
T) None of Q), R), and S.
(93) For an expression like $\frac{2 x^{2}}{\sqrt[5]{9 x^{2} y^{18}}}$ to be put in simplified form, then by definition the answer must have no perfect $n^{\text {th }}$ powers, be reduced as far as possible, and \qquad To complete the definition, fill in the blank with
u) the denominator is squared
W) the denominator is rationalized.
x) the numerator is rationalized
z) None of U), w), and X).
$(4-47 T)$
(94) Which is the correct beginning to putting in simplified form?
A) $\frac{2 x^{2}}{\sqrt[5]{9 x^{2} y^{18}}}=\frac{2 x^{2}}{\sqrt[5]{9 x^{2} y^{18}}} \cdot \frac{\sqrt{9 x^{2} y^{18}}}{\sqrt{9 x^{2} y^{18}}}$
B) $\frac{2 x^{2}}{\sqrt[5]{9 x^{2} y^{18}}}=\frac{2 x^{2}}{\sqrt[5]{3^{2} x^{2} y^{18}}} \cdot \frac{1}{\sqrt[5]{3^{3} x^{3} y^{2}}}$
C) $\frac{2 x^{2}}{\sqrt[5]{9 x^{2} y^{18}}}=\frac{2 x^{2}}{\left(\sqrt[5]{3^{2} x^{2} y^{18}}\right)^{5}}$
D) $\frac{2 x^{2}}{\sqrt[5]{9 x^{2} y^{18}}}=\frac{2 x^{2}}{\sqrt[5]{3^{2} x^{2} y^{18}}} \cdot \frac{\sqrt[5]{3^{3} x^{3} y^{2}}}{\sqrt[5]{3^{3} x^{3} y^{2}}}$
E) None of A) B)
$E)$ None of $A), B), C)$, and D).
(4-47T)
(95) TOR $F: \frac{2 x^{2} \sqrt[5]{27 x^{3} y^{2}}}{3 x y^{4}}$ is in simplified form.
T) true
F) false
(4-47T)
(96) Which of the following is correct?
6) $\frac{2 x^{2}}{\sqrt[5]{3^{2} x^{2} y^{18}}} \cdot \frac{\sqrt[5]{3^{3} x^{3} y^{2}}}{\sqrt[5]{3^{3} x^{3} y^{2}}}=\frac{2 x^{2} \sqrt[5]{3^{3} x^{3} y^{2}}}{\sqrt[5]{3^{6} x^{6} y^{36}}}$
H) $\frac{2 x^{2}}{\sqrt[5]{3^{2} x^{2} y^{18}}} \cdot \frac{\sqrt[5]{3^{\frac{5}{2}} x^{\frac{5}{2}} y^{\frac{5}{8}}}}{\sqrt[5]{3^{\frac{5}{2}} x^{5 / 2} y^{\frac{5}{18}}}}=\frac{2 x^{2} \sqrt[5]{3^{\frac{5}{2}} x^{5 / 2} y^{5 / 8}}}{\sqrt[5]{3^{5} x^{5} y^{5}}}$
J) $\frac{2 x^{2}}{\sqrt[5]{3^{2} x^{2} y^{18}}} \cdot \frac{\sqrt[5]{3^{3} x^{3} y^{2}}}{\sqrt[5]{3^{3} x^{3} y^{2}}}=\frac{2 x^{2} \sqrt[5]{3^{3} x^{3} y^{2}}}{\sqrt[5]{3^{5} x^{5} y^{20}}}$
K) None of $G), H$), and J).

$$
(4-47 m)
$$

(97) $x^{-\frac{2}{3}}$ is which radical in the denominator in disguise?
L) $\frac{1}{\sqrt[3]{x^{2}}}$
m) $\frac{1}{\sqrt[2]{x^{3}}}$
p) $\frac{1}{\sqrt{x^{2 / 3}}}$
Q) None of $(L), M)$, and P).
(4-47B)
(98) Which is a correct beginning to putting in simplified form?
R) $\frac{5 x^{2} \sqrt[4]{y^{2}}}{\sqrt[4]{9 x y^{5}}}=\frac{5 x^{2} \sqrt[4]{y^{2}}}{\sqrt[4]{9 x y^{5}}} \cdot \frac{\sqrt{9 x y^{5}}}{\sqrt{9 x y^{5}}}$
5) $\frac{5 x^{2} \sqrt[4]{y^{2}}}{\sqrt[4]{9 x y^{5}}}=\frac{5 x^{2} \sqrt[4]{y^{2}}}{\sqrt[4]{3^{2} x y^{5}}} \cdot \frac{\sqrt[4]{3^{2} x^{3} y^{3}}}{\sqrt[4]{3^{2} x^{3} y^{3}}}$
T) $\frac{5 x^{2} \sqrt[4]{y^{2}}}{\sqrt[4]{9 x y^{5}}}=\frac{5 x^{2}\left(\sqrt[4]{y^{2}}\right)^{4}}{\left(\sqrt[4]{9 x y^{5}}\right)^{4}}$
4) None of R), S), and T).
(99) Which of the following is correct?
A) $\frac{5 x^{2} \sqrt[4]{y^{2}}}{\sqrt[4]{3^{2} x y^{5}}} \cdot \frac{\sqrt[4]{3^{2} x^{3} y^{3}}}{\sqrt[4]{3^{2} x^{3} y^{3}}}=\frac{5 x^{2} \sqrt[4]{3^{2} x^{3} y^{6}}}{\sqrt[4]{3^{4} x^{3} y^{15}}}$
B) $\frac{5 x^{2} \sqrt[4]{y^{2}}}{\sqrt[4]{3^{2} x y^{5}}} \cdot \frac{\sqrt[4]{3^{\frac{4}{2}} x^{4} y^{\frac{4}{5}}}}{\sqrt[4]{3^{\frac{4}{2}} x^{4} y^{4 / 5}}}=\frac{5 x^{2} \sqrt[4]{3^{4 / 2} x^{4} y^{8 / 5}}}{\sqrt[4]{3^{4} x^{4} y^{4}}}$.
c) $\frac{5 x^{2} \sqrt[4]{y^{2}}}{\sqrt[4]{3^{2} x y^{5}}} \cdot \frac{\sqrt[4]{3^{2} x^{3} y^{3}}}{\sqrt[4]{3^{2} x^{3} y^{3}}}=\frac{5 x^{2} \sqrt[4]{3^{2} x^{3} y^{5}}}{\sqrt[4]{3^{4} x^{4} y^{8}}}$
D) None of A) B), and C).
$(4-48 T)$
(100) TRUE OR FALSE: $\sqrt[4]{3^{2} x^{3} y^{5}}$ is in simplified form.
T) True
F) False
$(4-48 \mathrm{M})$
36
(101) TRUE OR EALSE: $\sqrt{9}+\sqrt{16}=\sqrt{9+16}$
T) TRUE
F) FALSE
(4-48m)
(102) $\sqrt{27}-5 \sqrt{3}+x \sqrt{3}=$
G) $\sqrt{22}-\sqrt{3}+x \sqrt{3}$
H) $\sqrt{27}-\sqrt{15}+x \sqrt{3}$
d) $\sqrt{27}-\sqrt{12}+x \sqrt{3}$
K) None of G), H), and J).
$(4-48 M)$
(103) TRUE OR FALSE: $2+3 \sqrt{x}=(2+3) \sqrt{x}$
T) $T R \cup E$
F) FALSE
$(4-48 B)$
(104) $\sqrt{27}-5 \sqrt{3}+x \sqrt{3}=$
L) $(x+2) \sqrt{3}$
M) $(x-2) \sqrt{3}$
p) $(2-x) \sqrt{3}$
Q) None of L), M), and P).
(4-48B)
(105) $5 \sqrt{x}+\sqrt{18 x^{3}}=$ (when $x \geq 0$)
R. $6 \sqrt{18 x^{4}}$
S. $5 \sqrt{x+18 x^{3}}$
T. $(5+3 \sqrt{x}) x$
U. $(5+3 \sqrt{2} x) \sqrt{x}$
ω. None of R), S), T), and U.
(5-50 T)
(106) $\frac{2}{3} x^{5}+\sqrt{2} x^{3}+7 x-\pi$ is
A) a polynomial expression.
B) is not a polynomial because of the irrational coefficient $\sqrt{2}$.
c) is not a polynomial because of the irrational constant $-\pi$.
D) None of A), B), and C).
(5-50m)
(107) $4 x^{\frac{2}{3}}+7 x-115$
E) a polynomial expression.
F) not a polynomial because of the $\frac{2}{3}$ exponent
G) is a coefficient.
H) is a term
J) None of $E), ~ F), 6)$, and H).
(5-50M)
(108) $5 \sqrt{x}+4$ is
k) a polynomial expression.
L) not a polynomial expression.
M) a term.
$\theta)$ a coefficient.
P) None of K), L) M), and θ).

$$
(5-50 T)
$$

(109) $4 x^{5}$
Q) is a polynomial expression.
R) is not a polynomial expression because it is too short.
S) is a coefficient.
T) None of Q), R), and S).
(5-50M)
(110) $\frac{2}{x^{2}+7 x}$ is
U) a polynomial expression.
w) not a polynomial expression.
X) a term.
z) None of v), w), and X).
(5-50 β)
(111) For the polynomial expression

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

A) $a_{n} x^{n}$ is a term.
B) $a_{n} x^{n}$ is a coefficient.
C) $a_{n} x^{n}$ is scientific notation.
D) None of A), B), and C).
(5-50B)
(112) For the polynomial expression

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

E) a_{n} is a term.
F) a_{n} is a coefficient.
G) is a perfect n^{+h} power.
$H)$ None of E), F), and G).
(5-50B)
(113) The exponents on the variable for a polynomial expression
J) can be any rational number.
K) can be any real number.
L) can be any integer.
$M)$ can be any whole number.
p) None of (1), K), L), and M).
(5-51 T)
(114) $3 x^{5}$ is a
Q) quadratic expression
R) binomial expression
S) Trinomial expression
T) None of $Q), R$, and S).

$$
(5-51 T)
$$

(115) An example of a monomial polynomial is
U) $x+1$
w) $1 x^{2}+1$
x) $7 x^{3}$
$z)$ None of $(U),(\omega)$, and $X)$.
$(5-51 T)$
(116) An example of a binomial polynomial is
A) $2 x^{2}$
B) $5 x^{2}+2 x-1$
C) $\frac{2}{3} x^{3}-7$
D) None of A), B), and C).
$(5-51 T)$
41
(117) $5 x^{2}+2 x-1$ is a
E) binomial expression
F) Trinomial expression
G) coefficient.
H) None of E), F), and G).
(5-5 lm)
(118) The degree of $-7 x^{3}+4 x^{10}-3$ is
J) 3
k) 10
L) -7
m) None of ($), k$, and L).
(5-5/B)
(119) Which is a linear expression?
N) 2
D) $5 x+2$
P) $5 x^{2}-3 x+7$
R) $3 x^{5}$
S) None of N),θ), P), and R).
(120) What type of expression is $5 x^{2}-3 x+7$?
T) Linear
U) Quadratic
w) Cubic
x) Binomial
z) None of $\tau),(U),(\omega)$, and X).
(5-51B)
(121) What is the degree of a quadratic expression?
A) 2
B) 4
C) 3
D) None of A), B), and C).
($5-5 / B$)
(122) Which of these is a cubic polynomial?
E) $5 x^{2}-3 x+7$
F) $3 x^{5}$
G) $4 x^{3}-7 x+6$
H) None of E), F), and G)
(5-51)
(123) Which of the following is a cubic binomial?
J) $4 x^{3}-7 x+6$
k) $7 x^{3}$
b) $\frac{2}{3} x^{3}-7$
m) None of 玉), K), ana L)
(5-52T)
(124) Subtraction of polynomials:

$$
\left(5 x^{2}-7 x\right)-\left(4 x^{2}-3 x+2\right)=
$$

N) $x^{2}-10 x+2$
o) $9 x^{2}-10 x+2$
P) $x^{2}-4 x+2$
R) $x^{2}-4 x-2$
S) None of N) (), p), and R).
$(5-52 T)$
(125) Subtraction of polynomials:

$$
\left(5 x^{2}-7 x\right)-\left(4 x^{2}-3 x+2\right)=
$$

T) $5 x^{2}-7 x-4 x^{2}-3 x+2$
4) $5 x^{2}-7 x+4 x^{2}-3 x+2$
w) $5 x^{2}-7 x-4 x^{2}+3 x-2$
$x)$ None of $t), u$), and ω).
(5-52M)
(126) Multiplying polynomials: $3 x^{2}\left(5 x^{3}-2 x+7\right)=$
A) $15 x^{5}-6 x^{3}+21 x^{2}$
B) $15 x^{6}-6 x^{2}+7 x^{2}$
C) $15 x^{5}-2 x+7$
D) None of A), B), and C).
(5-52B)
(127) Multiplying Polynomials:

$$
\left(3 x^{2}-2\right)\left(4 x^{2}-3 x+6\right)=
$$

A) $12 x^{4}+9 x^{3}+10 x^{2}+6 x-12$
B) $12 x^{4}-9 x^{3}+10 x^{2}-6 x+12$
C) $12 x^{4}-9 x^{3}-10 x^{2}+6 x-12$
D) $12 x^{4}-9 x^{3}+10 x^{2}+6 x-12$
E) None of A), B), C), and D).
(5-52B)
(128) Multiplying Polynomials: Distributeuity.

$$
\left(3 x^{2}-2\right)\left(4 x^{2}-3 x+6\right)=\left(3 x^{2}-2\right)\left(4 x^{2}\right)+\left(3 x^{2}-2\right)
$$

$+\left(3 x^{2}-2\right)(6)$. Flll in the blank
F) $3 x$
G) $-3 x$
H) $4 x^{2}$

व) None of $F), G)$, and H).
(5-53)
(129) Multiplying polynomials:

$$
\begin{aligned}
& \begin{array}{l}
4 x^{2}-3 x+6 \\
3 x^{2}-2
\end{array} \\
& \frac{12 x^{4}+\square+18 x^{2}}{} \\
& \begin{array}{r}
-8 x^{2}+6 x-12
\end{array}
\end{aligned}
$$

The boxes are filled in with the same number and that number is:
k) $0 x$
L) $-9 x^{2}$
M) $-9 x^{3}$
P) None of K), L), and M).
$(5-53 M)$
(130) $(x+3)(2 x-6)=$
Q) $2 x^{2}-18$
R) $2 x^{2}+12 x-18$
S) $2 x^{2}-12 x-18$
$T)$ None of Q), R), and S).
(5-53M)
(131) $(2 x-5)(x+4)=$
U) $2 x^{2}-3 x-20$
w) $2 x^{2}-20$

ג) $2 x^{2}+3 x+20$
z) None of these.
(5-53B)
(132) $a^{2}+2 a b+b^{2}=$
A) $(a+b)(a-b)$
B) $(a+b)^{2}$
C) $(a-b)^{2}$
D) None of A), B), and C).
(5-53B)
(133 $(a+b)^{2}=$
E) $a^{2}+b^{2}$
F) $a^{2}+a b+b^{2}$
G) $a^{2}+2 a b+b^{2}$
H) None of E) F), and G).
$(5-54 \pi)$
(134) $(a-b)^{2}=$
J) $a^{2}-b^{2}$
K) $a^{2}+b^{2}$
L) $a^{2}-a b+b^{2}$
M) $a^{2}-2 a b+b^{2}$
N) None of $\bar{J}),(K), L)$, and M).
$(5-54 M)$
(135) $(3 x-4)^{2}=$
P) $9 x^{2}-16$
Q) $9 x^{2}+11$
R) $(3 x)^{2}-(3 x)(4)+16$
S) $(3 x)^{2}-2(3 x)(4)+16$
T) None of P) Q Q , R), and S).
(5-54B)
(136) $a^{2}-b^{2}=$
u) $(a-b)(a-b)$
w) $(a+b)(a-b)$
x) $(a+b)^{2}$
z) None of $(u), \omega)$, and x).
$(5-54 B)$
48
$137 \quad(2 y-5)(2 y+5)=$
A) $2 y^{2}-25$
B) $4 y^{2}-20 y-25$
C) $4 y^{2}-25$
D) None of A), B), and C).

$$
(5-54 B)
$$

(138) $\left(x^{3}-7\right)\left(x^{3}+7\right)=$
E) $x^{6}-49$
F) $x^{9}-49$
G) $x^{6}-14 x^{3}-49$
H) None of $E), F)$, and G).
(5-57T)
(139) $(3+\sqrt{6})(3-\sqrt{6})=$
J) $6-6$
k) $9-6$
L) $3-6 \sqrt{6}-6$
M) $3-6 \sqrt{6}+6$
N) None of 5$),(k), L$), and M).
(5-57T)
(140) To rationalize the denominator in $\frac{5}{3+\sqrt{6}}$, the initial step taught was
p) $\frac{5}{3+\sqrt{6}}=\frac{5}{3+\sqrt{6}} \cdot \frac{3+\sqrt{6}}{3+\sqrt{6}}$
Q) $\frac{5}{3+\sqrt{6}}=\frac{5}{3+\sqrt{6}} \cdot \frac{1}{3-\sqrt{6}}$
R) $\frac{5}{3+\sqrt{6}}=\frac{(5)^{2}}{(3+\sqrt{6})^{2}}$
S) $\frac{5}{3+\sqrt{6}}=\frac{5}{3+\sqrt{6}} \cdot \frac{3-\sqrt{6}}{3-\sqrt{6}}$
$T)$ None of P),$Q), R$), and S).
(5-57B)
(141) To rationalize the denominator in $\frac{3+\sqrt{5}}{\sqrt{2}-\sqrt{3}}$, the initial step as taught was to multiply the numerator and denominator by
U) $\sqrt{2}+\sqrt{3}$
w) $\sqrt{2}-\sqrt{3}$
x) the square of the numerator and the denominator.
z) None of (U), $($), and X).
(5-57B)
50
142) Which is the correct derivation step in rationalizing the denominator?
A) $\frac{3+\sqrt{5}}{\sqrt{2}-\sqrt{3}} \cdot \frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{3 \sqrt{2}+\sqrt{5} \sqrt{3}}{(\sqrt{2})^{2}+(\sqrt{3})^{2}}$
B) $\frac{3+\sqrt{5}}{\sqrt{2}-\sqrt{3}} \cdot \frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{3 \sqrt{2}+\sqrt{5} \sqrt{3}}{(\sqrt{2})^{2}-(\sqrt{3})^{2}}$
c) $\frac{3+\sqrt{5}}{\sqrt{2}-\sqrt{3}} \cdot \frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{3 \sqrt{2}+3 \sqrt{3}+\sqrt{5} \sqrt{2}+\sqrt{5} \sqrt{3}}{(\sqrt{2})^{2}-(\sqrt{3})^{2}}$
D) None of A), B), and ().
$(5-58 \mathrm{~m})$
(143) Polynomial division: $\frac{3 x^{7}+4 x^{3}-5}{2 x^{2}}=$
E) $\frac{3}{2} x^{9}+2 x^{5}-\frac{5}{2} x^{-2}$
F) $\frac{3}{2} x^{9}+2 x^{5}-\frac{5}{2} x^{2}$
G) $\frac{3}{2} x^{5}+2 x-\frac{5}{2 x^{2}}$
H) $x^{5}+2 x-3 x^{-2}$
I) None of E), F), G), and H).

$$
\begin{equation*}
(5-59 T) \tag{51}
\end{equation*}
$$

(144) To begin the long division process

$$
2 x ^ { 2 } + 3 x - 2 \longdiv { 8 x ^ { 4 } - 4 x ^ { 3 } - 2 0 x ^ { 2 } + 3 x - 1 1 }
$$

the first term is to be put, in the box. what is that first term?
J) $6 x^{2}$
k) $-6 x^{2}$
L) $4 x^{2}$
M) $-4 x^{2}$
$\theta)$ None of $J(, K), L)$, and M).
(5-59T)
(145) As you press on in the long division process

$$
2 x^{2}+3 x-2 \underbrace{}_{\Theta}
$$

What term is put in the box for the second term of your answer?
p) $-6 x$
Q) $6 x$
R) $-16 x$
S) $16 x$
T) $-8 x$
4) $8 x$
w) None of $P(, Q), R), S), T$), and U).
(146) Long division of $\frac{8 x^{4}-4 x^{3}-20 x^{2}+3 x-11}{2 x^{2}+3 x-2}=\frac{T}{B}$
gives

$$
2 x ^ { 2 } + 3 x - 2 \longdiv { 8 x ^ { 4 } - 4 x ^ { 3 } - 2 0 x ^ { 2 } + 3 x - 1 1 }
$$

with remainder $-31 x+1$ When put in $\frac{T}{B}=Q+\frac{R}{B}$ form it is
A)

$$
\begin{aligned}
& \frac{8 x^{4}-4 x^{3}-20 x^{2}+3 x-11}{2 x^{2}+3 x-2}= \\
& \frac{4 x^{2}-8 x+6}{2 x^{2}+3 x-2}+(-31 x+1)
\end{aligned}
$$

B)

$$
\begin{aligned}
& \frac{8 x^{4}-4 x^{3}-20 x^{2}+3 x-11}{2 x^{2}+3 x-2}= \\
& 4 x^{2}-8 x+6+\frac{(-31 x+1)}{2 x^{2}+3 x-2}
\end{aligned}
$$

C)

$$
\begin{aligned}
& \frac{8 x^{4}-4 x^{3}-20 x^{2}+3 x-11}{2 x^{2}+3 x-2}= \\
& \left(4 x^{2}-8 x+6\right)\left(2 x^{2}+3 x-2\right)+(-31 x+1)
\end{aligned}
$$

D)

$$
\begin{aligned}
& 8 x^{4}-4 x^{3}-20 x^{2}+3 x-11= \\
& \left(4 x^{2}-8 x+6\right)\left(2 x^{2}+3 x-2\right)+(-31 x+1)
\end{aligned}
$$

$E)$ None of $A), B), C)$, and D).
(5-60T)
(147) When beginning the long division process for $\frac{x^{3}-8}{x-2}$ as taught, how is each box filled in?

$$
x - 2 \longdiv { x ^ { 3 } + \square x ^ { 2 } + \square x - 8 }
$$

F) Fill in both boxes with 0 .
G) Fill $1^{\text {st }}$ box with +1 ; fill $2^{\text {nd }}$ box with -1 .
H) Fill in both boxes with 1 .
$J)$ None of $F), G)$, and H).
$(5-60)$
(148) The long division $x - 2 \longdiv { x ^ { 3 } + 0 x ^ { 2 } + 0 x - 8 }$ gives a remainder of 0 . This means that $x^{3}-8$ factors into
K) $\left(x^{2}+2 x+4\right)\left(x^{3}-8\right)$
L) $\left(x^{2}+2 x+4\right)(x-2)$
M) $(x-2)\left(x^{3}-8\right)$
θ) None of K), L), and M).
(5-60T)
(149) When you press on in the long division process

$$
\begin{gathered}
x - 2 \longdiv { x ^ { 3 } + 0 x ^ { 2 } + 0 x - 8 } \\
\Theta x^{3}-2 x^{2}
\end{gathered}
$$

what term is put in the box for the second term of your answer?
P) x
Q) $-x$
R) $2 x^{2}$
S) $-2 x^{2}$
T) None of P),Q),R), and S).
$(5-62 T)$
(150) What is the blank filled in with to complete the factoring:

$$
9 x^{4}-3 x^{3}+6 x^{2}=3 x^{2}(
$$

v) $3 x^{2}-3 x+6$
w) $3 x^{2}-3 x^{3}+6 x^{2}$
x) $3 x^{2}-x+2$
$z)$ None of $(v), \omega$), and X).
$(5-62 T)$
(151) GROUP, THEN FACTOR: $\left(x^{2}+3\right) x-\left(x^{2}+3\right) 5$ factors into
A) Irreducible, does not factor.
B) $\left(x^{2}+3\right)(x)(-5)$
C) $\left(x^{2}+3\right)(x-5)$
D) None of A) , B), and C).
(5-62 M)
(152) GROUP, THEN FACTOR:

$$
x^{3}+3 x+4 x^{2}+12=\left(x^{3}+3 x\right)+\left(4 x^{2}+12\right)
$$

$=(\ldots) x+(\ldots)$. What fills in the blanks?
E) Fill in both blanks with $x+3$.
E) Fill in the first blank with $x+3$ and the $\operatorname{secon} \theta$ blank with $x^{2}+3$.
G) Fill in both blanks with $x^{2}+3$.
$H)$ None of $E), F$), and G).
(5-62B) GROUP, THEN FACTOR:
(153) TRUE OR EALSE:

$$
\begin{aligned}
& \text { 3) TRUE OR EALSE: } \\
& (p-q) \omega+(q-p) b=(p-q) \omega-(p-q) b
\end{aligned}
$$

T) True
F) False
(5-62B)
56
(154) GROUP, THEN EACTOR:
$p \omega+q b-q \omega-p b=(p \omega-q \omega)+(q b-p b)$
$=(\ldots) \omega+$ _ What fills in the blanks?
2) Fill in the first blank with $p-q$ and the second blank with $q-p$.
K) Fill in both blanks with $p-q$.
L) Fill in both blanks with $q-p$
M) None of J), K), an (4).
(5-62 B)
(155) GROUP, THEN FACTOR: $p \omega+q b-q \omega-p b$
factors into
N) $(p-q)(b-\omega)$
O) $(q-p)(w-b)$
p) $(p+q)(w-b)$
R) $(p-q)(w-b)$
s) None of N) θ),p, and R).
(5-64)
(156) Factoring $6 x^{2}+13 x+5$ into $(3 x+-)(2 x+-)$
T) Both blanks have to be filled in with positive numbers.
U) It is possible that both blanks could be filled in with negative numbers.
w) It is possible to fill in one blank with a positive number and one with a negative number.
x) None of $T,(U)$, and ω).
(157) To factor $6 x^{2}-11 x+5$ into the product of two linear factors with integer coefficients, you get
A) $(6 x-1)(x-5)$
B) $(3 x-1)(2 x-5)$
C) Impossible, irreducible over the integers.
D) None of A) , B), an θ C).
(5-66)
(158) To factor $6 x^{2}-13 x-5$ into the product of two linear factors with integer coefficients, you get
E) $(6 x+1)(x-5)$
F) $(3 x-1)(2 x+5)$
G) Impossible, irreducible over the integers.
H) None of E), F), and G).
(5-67)
(159) A way to factor $-6 x^{2}+13 x+5$ is to $1 \frac{15}{}$ factor a minus out to get $-\left(6 x^{2}-13 x-5\right)$. Next factor $6 x^{2}-13 x-5$. The final answer for factoring the original $-6 x^{2}+13 x+5$ into the product of two limen factors is
J) $(3 x+1)(2 x-5)$
K) $(3 x+1)(-2 x-5)$
L) $(3 x+1)(-2 x+5)$
M) Impossible, irreducible over the integers.
p) None of J) , K) , L), and M).
(5-67B)
(160) To factor $x^{2}+x+1$ into the product of two linear factors with integer coefficients, you get
Q) $(x+1)(x+1)$
R) $(x+1)(x-1)$
S) $(x-1)(x-1)$
T) Impossible, irreducible over the integers.
U) None of Q), R), S), and T).
$(5-69 T)$
(161) To factor $6 x^{2}-17 x+5$ into the product of 2 linear factor with integer coefficients by the reduce to "group then factor "method, you first need to find two numbers whose
A) sum is -17 and whose product is 11 .
B) Sum is 30 and whose product is -17 .
C) sum is -17 and whose product is 5 .
D) sum is -17 and whose product is 30°.
E) None of A) , B) , C), anQ D).
(5-69M)
(162) To begin, as taught, factoring $6 x^{2}-17 x+5$ into the product of 2 linear factors by the reduce to "group then factor" method, the first step was $6 x^{2}-17 x+5=$
F) $6 x^{2}-(15-2) x+5$
G) $6 x^{2}+(-15,-2) x+5$
H) $6 x^{2}+(-15-2) x+5$
J) None of E), G), and H).
$(5-69 B)$
59
(163) Some initial derivation of factoring $6 x^{2}-17 x+5$ by the reduce to "group, then factor" method is

$$
\begin{aligned}
& 6 x^{2}-17 x+5= \\
& 6 x^{2}+(-15-2) x+5= \\
& 6 x^{2}-15 x-2 x+5=
\end{aligned}
$$

Which is a correct next line in the derivation?
k) $\left(6 x^{2}-15 x\right)-(2 x+5)$
L) $\left(6 x^{2}-15 x\right)+(2 x-5)$
M) $\left(6 x^{2}-15 x\right)+(-2 x-5)$

ө) $\left(6 x^{2}-15 x\right)-(2 x-5)$
p) None of $K), L), M), a n \theta(\theta)$
(5-70T)
(164) To factor $6 x^{2}-11 x+5$ into the product of 2 linear factors with integer coefficients by the reduce to "group, then factor" method, you first need to find two numbers whose
A) sum is -11 an θ whose product is 30 .
B) sum is 30 and whose product $15-11$.
C) Sum is -11 and whose product is 5
D) sum is -11 and whose product is 11
E) None of A) , B) , C), and D).
(5-70t)
60
(165) To begin, as taught, factoring $6 x^{2}-11 x+5$ into The product of 2 linear factors by the reduce to "group, then factor" method, the first step was $6 x^{2}-11 x+5=$
F) $6 x^{2}+(-6,-5) x+5$
G) $6 x^{2}+(-6-5) x+5$
H) $6 x^{2}-(6-5) x+5$
J) None of F), G), and H).
(5-70 M)
(166) Some initial derivation of factoring $6 x^{2}-11 x+5$ by the reduce to "group, then Factor" method is

$$
\begin{aligned}
& 6 x^{2}-11 x+5= \\
& 6 x^{2}+(-6-5) x+5= \\
& 6 x^{2}-6 x-5 x+5=
\end{aligned}
$$

what is a correct next line in the derivation?
k) $\left(6 x^{2}-6 x\right)-(5 x+5)$
L) $\left(6 x^{2}-6 x\right)-(5 x-5)$
M) $\left(6 x^{2}-6 x\right)+(5 x-5)$

ө) $\left(6 x^{2}-6 x\right)+(-5 x-5)$
p) None of $(K), L), M)$, and θ)
(5-7:T)
(167) $4 x^{2}+12 x+9=$
Q) $(2 x+3)^{2}$
R) $(4 x+9)^{2}$
S) $(2 x+3)(2 x-3)$
T) $(2 x-3)^{2}$
U) None of Q), R), S), and T).
(5-71T)
(168)

$$
4 x^{2}-12 x+9=
$$

V) $(2 x+3)^{2}$
w) $(2 x-3)^{2}$
x) $(2 x+3)(2 x-3)$
y) $(4 x-9)^{2}$
z) None of $(v), \omega), x)$, and y).
(5-71M)
(169) $4 x^{2}-9=$
A) $(2 x-3)^{2}$
B) $(4 x-9)^{2}$
C) $(2 x+3)(2 x-3)$
D) $(-2 x+3)^{2}$
E) None of A),$B),()$, and D).
(5-7718)
(170) $a^{3}-b^{3}=$
F) $(a-b)\left(a^{2}-a b+b^{2}\right)$
G) $(a-b)\left(a^{2}+a b+b^{2}\right)$
H) $(a-b)\left(a^{2}+2 a b+b^{2}\right)$
J) $(a+b)\left(a^{2}-a b-b^{2}\right)$
K) None of F), 6), H), and ₹).
(5-72T)
(171) $8 x^{3}-27 y^{3}=$
L) $(2 x-3 y)\left(4 x^{2}+6 x y+9 y^{2}\right)$
m) $(2 x-3 y)\left(2 x^{2}+12 x y+3 y^{2}\right)$
$\theta)(2 x-3 y)\left(4 x^{2}-6 x y+9 y^{2}\right)$
P) $(2 x+3 y)\left(4 x^{2}-6 x y+9 y^{2}\right)$
R) None of L),M) θ) and p).
(5-22M)
172

$$
x^{12}-y^{12}=
$$

5) $\left(x^{3}-y^{3}\right)\left(x^{4}+y^{4}\right)$
T) $\left(x^{6}-y^{6}\right)^{2}$
v) $\left(x^{4}\right)^{3}-\left(y^{4}\right)^{3}$
v) $\left(x^{6}\right)^{6}-\left(y^{6}\right)^{6}$
w) None of 5),T), U), and V)
($5-72 \mathrm{M})$
(173) $x^{12}-y^{12}=\left(x^{4}\right)^{3}-\left(y^{4}\right)^{3}=$
A) $\left(x^{4}-y^{4}\right)\left(\left(x^{4}\right)^{2}-x^{4} y^{4}+\left(y^{4}\right)^{2}\right)$
B) $\left(x^{4}-y^{4}\right)\left(\left(x^{4}\right)^{2}+x^{4} y^{4}+\left(y^{4}\right)^{2}\right)$
C) $\left(x^{4}+y^{4}\right)\left(\left(x^{4}\right)^{2}-2 x^{4} y^{4}+\left(y^{4}\right)^{2}\right)$
D) $\left(x^{4}+y^{4}\right)\left(\left(x^{4}\right)^{2}+2 x^{4} y^{4}+\left(y^{4}\right)^{2}\right)$
E) None of $A), B), C)$, and D).
(5-72M)
(174) $x^{12}-y^{12}=\left(x^{4}\right)^{3}-\left(y^{4}\right)^{3}=\left(x^{4}-y^{4}\right)\left(\left(x^{4}\right)^{2}+x^{4} y^{4}+\left(y^{4}\right)^{2}\right)=$
F) $\left(x^{2}-y^{2}\right)^{2}\left(x^{8}+x^{4} y^{4}+y^{8}\right)$
6) $\left(x^{2}-y^{2}\right)^{2}\left(x^{6}+x^{4} y^{4}+y^{6}\right)$
H) $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)\left(x^{8}+x^{4} y^{4}+y^{8}\right)$
J) $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)\left(x^{6}+x^{4} y^{4}+y^{6}\right)$
k) None of $F), G), H$), and j).
$(5-72 m)$ $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)\left(x^{8}+x^{4} y^{4}+y^{8}\right)=$
L) $(x-y)(x+y)\left(x^{2}+y^{2}\right)\left(x^{8}+x^{4} y^{4}+y^{8}\right)$
m) $(x-y)^{2}(x+y)^{2}\left(x^{8}+x^{4} y^{4}+y^{8}\right)$
Q) $(x-y)(x+y)(x+y)^{2}\left(x^{8}+x^{4} y^{4}+y^{5}\right)$
P) $(x-y)^{2}\left(x^{2}+y^{2}\right)\left(x^{8}+x^{4} y^{4}+y^{8}\right)$
R) None of 4), M), 0), an (P).
($5-72 \mathrm{M}$)
(176) $a^{3}+b^{3}=$
7) $(a-b)\left(a^{2}+a b+b^{2}\right)$
T) $(a+b)\left(a^{2}-2 a b+b^{2}\right)$
V) $(a+b)\left(a^{2}-2 a b-b^{2}\right)$
w) $(a+b)\left(a^{2}-a b+b^{2}\right)$
$x)$ None of $s), \tau), U$), and ω).
(5-72B)
177 ($8 x^{3}+27 y^{3}=(2 x)^{3}+[3 y]^{3}=$
A) $((2 x)+[3 y])\left[(2 x)^{2}-2(2 x)[3 y]+[3 y]^{2}\right]$
B) $((2 x)+[3 y])\left[(2 x)^{2}-(2 x)[3 y]+[3 y]^{2}\right]$
C) $((2 x)+[3 y])\left[(2 x)^{2}-2(2 x)[3 y]-[3 y]^{2}\right]$
D) $((2 x)-[3 y])\left[(2 x)^{2}+(2 x)[3 y]+[3 y]^{2}\right]$
E) None of $A), B), C)$, and D)
(5-72B)
128

$$
x^{6}+y^{6}=
$$

F) $\left(\left(x^{2}\right)+\left[y^{2}\right]\right)\left[\left(x^{2}\right)^{2}-\left(x^{2}\right)\left[y^{2}\right]+\left[y^{2}\right]^{2}\right]$
G) $\left(\left(x^{2}\right)+\left[y^{2}\right]\right)\left[\left(x^{2}\right)^{2}-2\left(x^{2}\right)\left[y^{2}\right]+\left[y^{2}\right]^{2}\right]$

Hi) $\left(\left(x^{2}\right)+\left[y^{2}\right]\right)\left[\left(x^{2}\right)^{2}-\left(x^{2}\right)\left[y^{2}\right]-\left[y^{2}\right]^{2}\right]$
J) $\left(\left(x^{2}\right)-\left[y^{2}\right]\right)\left[\left(x^{2}\right)^{2}+2\left(x^{2}\right)\left[y^{2}\right]+\left[y^{2}\right]^{2}\right]$
K) None of $F), G), H$, and J).
(5-74T)
(179) Factoring: $-8 x^{7}+8 x=-8 x\left(x^{6}-1\right)=$
L) $-8 x\left(x^{3}-1\right)^{2}$
m) $-8 x\left(x^{2}-1\right)^{3}$
$\theta)-8 x\left(x^{3}-1\right)\left(x^{3}+1\right)$
p) $-8 x(x-1)^{3}(x+1)^{3}$
R) None of $L(, M), \theta)$, and P).
(5-74T)
(180) Factoring: $-8 x^{7}+8 x=$
S) $-8 x(x-1)^{2}\left(x^{2}+x+1\right)(x+1)^{2}\left(x^{2}-x+1\right)$
T) $-8 x(x-1)\left(x^{2}+x+1\right)(x+1)\left(x^{2}-x+1\right)$
U) $-8 x(x-1)^{2}\left(x^{2}+x+1\right)^{2}$
w) $-8 x(x+1)^{2}\left(x^{2}-x+1\right)$
x) None of $s), T),(u)$, and ω).
(5-74B)
(181) Using the long division
at the right as help, I can $x - 2 \longdiv { x ^ { 3 } + 2 x - 3 }$ be seen that $x^{3}-7 x+6$ factors into
A) $(x-2)(x-3)^{2}$
B) $(x-2)(x+3)(x-1)$

$$
\begin{aligned}
& \Theta \frac{x^{3}-2 x^{2}}{\Theta^{2 x^{2}-7 x}} \\
& \frac{2 x^{2-4 x}}{\bar{\Phi}^{+3 x+6}-3 x+6}
\end{aligned}
$$

C) $(x-2)(x+2)(x-3)$
D) $(x-2)(x-3)(x+1)$
F) $(x-2)(x-3)(x-1)$
$(5-75 \tau)$
(182) $27 x^{3}-125=$
F) $(3 x-5)\left(9 x^{2}+15 x+25\right)$
G) $(27 x-5)(27 x+5)$
H) $(3 x-5)\left(9 x^{2}-15 x+25\right)$
J) $(3 x-5)\left(9 x^{2}+30 x+25\right)$
K) None of F) , G), H), and J).
(5-75B)
(183) A rational expression is a fraction of \qquad
L) Integers
m) Polynomials
p) Rational numbers
Q) None of L), M), an $Q P$).
(5-75B)
(184) Which of the following is a rational expression
R. $\sqrt{x}+1$
S. $\frac{\sqrt{x}+1}{\sqrt{x}-1}$
T. $\frac{3 x^{2}+\sqrt{x}+5}{x+2}$
U. $\frac{5}{\sqrt{x}+3}$
w. None of R),$S), T$), and v).
(5-76T)
(185) What is $\frac{x^{2}-4}{x^{3}-8}$ reduced to its lowest terms?
A) $\frac{x-2}{x^{2}-2 x+4}$
B) $\frac{x-2}{x^{2}+2 x+4}$
C) $\frac{x+2}{x^{2}-2 x+4}$
D) $\frac{x+2}{x^{2}+2 x+4}$
E) None of A) , B), C), and D).
(5-76M)
(186) What is $\frac{x^{2}-9}{x^{2}-25} \cdot \frac{x^{2}-6 x+5}{x^{2}-4 x+3}$ reduced to lowest terms?
F) $\frac{x+3}{x-5}$
G) $\frac{x-3}{x+5}$
H) $\frac{x+3}{x+5}$

च) $\frac{x-3}{x-5}$
k) $\frac{x+3}{x-1}$
L.) $\frac{x-3}{x-1}$
M) None of $E(G), H), J), K)$, and L).
(5-76B)
(187) What is $\frac{x^{2}-3 x+2}{x^{2}-4} \div \frac{5 x^{2}-5}{x^{2}+3 x+2}$ reduced
to lowest terms?
N) 5
O) $\frac{1}{5}$
P) $\frac{x-1}{x+2}$
R) $\frac{x-1}{5(x+2)}$
S) None of $N(, \theta), p)$, and R).
$(5-78 T)$
(188) What is $\operatorname{lcm}\left(2^{6} \cdot 5^{10} \cdot 7^{20}, 3^{8} \cdot 5^{6} \cdot 7^{4} \cdot 11^{8}\right)$?
T) $2^{6} \cdot 3^{8} \cdot 5^{6} \cdot 7^{4} \cdot 11^{8}$
v) $5^{6} \cdot 7^{4}$
w) $2^{6} \cdot 3^{8} \cdot 5^{10} \cdot 7^{20} \cdot 11^{8}$
x) $2^{6}, 3^{8}, 5^{6}, 7^{4}, 11^{8}$
$z)$ None of $T),(u), \omega)$, and $X)$.
(5-78M)
(189) $\operatorname{lcm}(36,45)=$
A) $2^{2} \cdot 3^{2} \cdot 5^{1}$
B) 36.45
C) 3^{2}
D) $2^{2}+3^{2}+5^{1}$
E) 36,45
F) $2^{2}, 3^{2}, 5^{1}$
G) None of $A), B),(), D), E)$, and F).
(5-78M)
69
(190) $\operatorname{lcm}\left(x^{5}(x+1)^{3}, y(x+1)^{4} x^{2}\right)=$
H) $x^{2}(x+1)^{3}$
I) $x^{2}(x+1)^{3} y$
K) $x^{2},(x+1)^{3}, y$
L) $x^{5}(x+1)^{4} y$
M) None of $H), I), K)$, and L).
(5-78 B) which is a next correct derivation step?
(191) $\operatorname{lcm}\left(x^{5}+3 x^{4}+3 x^{3}+x^{2}, x^{3}-x+x^{2}-1\right)=$ $\operatorname{lcm}\left(x^{2}\left(x^{3}+3 x^{2}+3 x+1\right), x\left(x^{2}-1\right)+\left(x^{2}-1\right) \cdot 1\right)=$
$N) \operatorname{lcm}\left(x^{2}\left(x^{3}+1\right),\left(x^{2}-1\right)(x+1)\right)$
$\theta) \operatorname{lcm}\left(x^{2}(x+1)^{3},\left(x^{2}+1\right)(x-1)\right)$
P) $\operatorname{lcm}\left(x^{2}(x+1)^{3},\left(x^{2}-1\right)(x+1)\right)$
R) $\operatorname{lcm}\left(x^{2}(x+3)^{3},\left(x^{2}-1\right)(x+1)\right)$
s) None of $N), \theta), P)$ and $R)$.
(5-78B)
(192) $\operatorname{lcm}\left(x^{5}+3 x^{4}+3 x^{3}+x^{2}, x^{3}-x+x^{2}-1\right)=$
T) $x^{2}(x+1)^{3}(x-1)$
v) $x^{2}\left(x^{3}+1\right)(x-1)$
w) $x^{2}(x+3)^{3}(x-1)$
x) $x^{2}(x+1)(x-1)$
$z)$ None of $T), u), w)$, and $x)$.
$(5-79 \mathrm{~m})$
(193) $\frac{3}{x^{5} y^{2}}+\frac{4}{x^{3} y^{7}}=$ (Not simplified)
A) $\frac{3+4}{x^{8} y^{9}}$
B) $\frac{3 x^{3} y^{7}+4 x^{5} y^{2}}{x^{15} y^{14}}$
c) $\frac{3 x^{3} y^{7}+4 x^{5} y^{2}}{x^{8} y^{9}}$
D.) $\frac{3+4}{x^{5} y^{2}+x^{3} y^{7}}$
E) None of $A(B), C)$, and D).
$(5-79 B)$
(194) $\frac{3}{x^{5} y^{2}}+\frac{4}{x^{3} y^{7}}=$ (Simplified)
F) $\frac{3+4}{x^{5} y^{7}}$
6) $\frac{3 y^{5}+4 x^{2}}{x^{5} y^{7}}$
H) $\frac{3 y^{2}+4 x^{3}}{x^{3} y^{2}}$

इ) $\frac{3 y^{5}+4 x^{2}}{x^{3} y^{2}}$
$k)$ None of $F(G), H)$, and J).
(5-79B)
(195) The smallest common denominator for $\frac{3}{x^{5} y^{2}}+\frac{4}{x^{3} y^{7}}$ 15
L) $x^{3} y^{2}$
M) $x^{8} y^{9}$
P) $x^{15} y^{14}$
Q) $x^{5} y^{7}$
R) None of L),$M), P$), and Q).
(5-79B)
(196) True or False: The smallest common denominator for $\frac{3}{x^{5} y^{2}}+\frac{4}{x^{3} y^{7}}$ is the least common multiple of the denominators.
T) True
F) False

$$
\frac{(5-79 \mathrm{~m})}{(197} \frac{3 x^{3} y^{7}+4 x^{5} y^{2}}{x^{8} y^{9}}=
$$

5) $\frac{3 x^{3} y^{7}+4 x^{5} y^{2}}{x^{8} y^{8}}=\frac{3+4 x^{5} y^{2}}{x^{5} y^{2}}$
T) $\frac{3 y^{5}+4 x^{2}}{x^{5} y^{7}}$
U) None of S) and T).
(5-80T)
(198) $\frac{3 z}{x^{5} y^{2}}-\frac{2 m}{x^{3} y^{6}}+\frac{4}{x^{4} y^{7}}=$
A) $\frac{3 z y^{5}-2 m x^{2} y+4 x}{x^{3} y^{2}}$
B) $\frac{3 z y^{5}-2 m x^{2} y+4 x}{x^{5} y^{7}}$
c) $\frac{3 z-2 m+4}{x^{5} y^{2}-x^{3} y^{6}+x^{4} y^{7}}$
D) $\frac{3 z-2 m+4}{x^{5} y^{7}}$
E) None of A) , B), and C).
$(5-80 T)$
(199) $\frac{2 m}{x^{3} y^{6}}=$
F) $\frac{2 m x^{2} y}{x^{3} y^{6} x^{2} y}$
G) $\frac{2 m}{x^{3} y^{6} x^{2} y}$
H) $\frac{2 m x^{2} y}{x^{3} y^{6}}$
J) None of $F), G)$, and H)
(5-80M)
73
(200) $\frac{x}{x^{2}+6 x+9}-\frac{(x-3)}{x^{2}+5 x+6}=$
k) $\frac{x-(x-3)}{(x+3)^{2}(x+2)(x+3)}$
L) $\frac{x-(x-3)}{(x+3)^{2}(x+2)}$
m) $\frac{x(x+2)-(x-3)(x+3)}{(x+3)^{2}(x+2)}$
$\theta)$ None of $(K), L)$, and M).
$\frac{(5-80 M)}{201} \frac{x}{x^{2}+6 x+9}-\frac{(x-3)}{x^{2}+5 x+6}=$
p) $\frac{2 x-9}{(x+3)^{2}(x+2)}$
Q) $\frac{2 x-9}{(x+3)(x+2)}$
R) $\frac{2 x+9}{(x+3)^{2}(x+2)}$
S) $\frac{2 x+9}{(x+3)(x+2)}$
T) None of $P(, Q), R)$, am S).
$(5-80 B)$
202

$$
5-\frac{4}{x}=
$$

v) $\frac{5-4}{x}=\frac{1}{x}$
w) $\frac{5 x-4 x}{x}=\frac{1 x}{x}=1$
x) $\frac{5 x-4}{x}$
z) None of $(V), \omega)$, and X).
$(5-80 B)$
(203 $3+\frac{x}{2}=$
A) $\frac{3+x}{2}$
B) $\frac{3 x+x}{2}$
C) $\frac{5+x}{2}$
D) None of A) , B), and C).
(5-81T)
(204) Which of the following is a complex fraction?
E) $\frac{(x+1)(x+2) 2+3(x+2) 8}{15(x+1)(x+2)-3(x+1) 2}$
F) $\frac{\frac{2}{3}+\frac{8}{x+1}}{5-\frac{2}{x+2}}$
G) $\frac{\sqrt{x+1}-x^{2}+7 \sqrt{x+2}-5 x^{6}(x+3)}{(x+1)^{2 / 3} \sqrt{7 x+6}-5 \sqrt{x+2}}$
H) None of E), F), and G).
(205) A way that was taught to change the complex fraction $\frac{\frac{2}{3}+\frac{8}{x+1}}{5-\frac{2}{x+2}}$ into a fraction that

$$
\overline{5-\frac{2}{x+2}}
$$

is not a complex fraction was to multiply the numerator and denominator of the main fraction by
J) $2+8+5-2$
K) $2 \cdot 8 \cdot 5 \cdot 2$
L) $3+(x+1)+(x+2)$
M) $3 \cdot(x+1)(x+2)$
$\theta)$ None of J) $,(K), L)$, and M).
(5-81 T,M)
206) When the quantity $3(x+1)(x+2)$ is distributed in $\frac{3(x+1)(x+2)\left[\frac{2}{3}+\frac{8}{x+1}\right]}{3(x+1)(x+2)\left[5-\frac{2}{x+2}\right]}$ and canceling is done, you get
P) $\frac{2+8}{5-2}$
Q) $\frac{2(x+1)+8(x+2)}{5(3)-2(x+1)}$
R) $\frac{(x+1)(x+2) 2+3(x+2) 8}{15(x+1)(x+2)-3(x+1) 2}$
5) $\frac{3(x+1)(x+2)(2)(8)}{3(x+1)(x+2) 5(-2)}$
T) None of P),$Q), R)$, and S).
(5-81)
(207) $\frac{\frac{2}{3}+\frac{8}{x+1}}{5-\frac{2}{x+2}}$ simplifies to
A) $\frac{2(x+2)(x+13)}{3(x+1)(5 x+8)}$
B) $\frac{2(x+1)(x+13)}{3(x+2)(5 x+18)}$
C) $\frac{3(x+1)(5 x+13)}{2(x+2)(x+13)}$
D) $\frac{8(x+2)(x+13)}{5(x+1)(5 x+8)}$
E) None of these.
(5-82T)
208

$$
\frac{\frac{2}{3}+\frac{8}{x+1}}{5-\frac{2}{x+2}}=
$$

F) $\frac{\frac{2+8}{3(x+1)}}{\frac{5-2}{x+2}}$
G) $\frac{2(x+1)+8(3)}{5(x+2)-2}$
H) $\frac{\frac{2(x+1)+24}{3(x+1)}}{\frac{5(x+2)-2}{x+2}}$
J) None of E), G), and H).
(5-82M)
(209) $\frac{\frac{2 x+26}{3(x+1)}}{\frac{5 x+8}{x+2}}=$
K) $\frac{2 x+26}{3(x+1)} \cdot \frac{5 x+8}{x+2}$
L) $\frac{5 x+8}{x+2} \cdot \frac{3(x+1)}{2 x+26}$
M) $\frac{2 x+26}{3(x+1)} \cdot \frac{x+2}{5 x+8}$
$\theta)$ None of K), L), and M)
(5-82M)
(210) True or false: $\frac{x^{4}+y^{5}}{5 x^{4}}=\frac{1+y^{5}}{5}$
T) True
F) False

$$
(5-82 B)
$$

(2i1) True or false:

$$
\frac{3(x+1)(x+2)+5(x-7)}{4(x+1)(x+x)}=\frac{3+5(x-7)}{4}
$$

T) True
F) False
$(5-82 \mathrm{~B})$ True or false: $\frac{x^{4} y^{5}}{5 x^{4}}=\frac{y^{5}}{5}$
E) False
(5-83 T)
(213) $\frac{x^{-2}-y^{-2}}{x^{-1}+y^{-1}} \cdot \frac{3 x}{y^{-1}-x^{-1}}=$
P) $\frac{x+y}{x^{2}-y^{2}} \cdot \frac{3 x}{\frac{1}{y}-\frac{1}{x}}$
Q) $\frac{\frac{1}{x^{2}}-\frac{1}{y^{2}}}{\frac{1}{x}+\frac{1}{y}} \cdot \frac{\frac{3}{x}}{\frac{1}{y}-\frac{1}{x}}$
R) $\frac{\frac{1}{x^{2}}-\frac{1}{y^{2}}}{\frac{1}{x}+\frac{1}{y}} \cdot \frac{3 x}{\frac{1}{y}-\frac{1}{x}}$
5) $\frac{\frac{1}{x^{-2}}-\frac{1}{y^{-2}}}{\frac{1}{x^{-1}}-\frac{1}{y^{-1}}} \cdot \frac{\frac{3 x}{1}}{\frac{1}{y^{-1}}-\frac{1}{x^{-1}}}$
T) None of $(P), Q), R)$, and S).
(5-83)
(214) $\frac{\frac{1}{x^{2}}-\frac{1}{y^{2}}}{\frac{1}{x}+\frac{1}{y}} \cdot \frac{3 x}{\frac{1}{y}-\frac{1}{x}}=$
A) $\frac{\frac{y^{2}-x^{2}}{x^{2}-y^{2}}}{\frac{y+x}{x+y}} \cdot \frac{\frac{3 x}{1}}{\frac{x-y}{y-x}}$
B) $\frac{\frac{y^{2}-x^{2}}{x^{2} y^{2}}}{\frac{y+x}{x y}} \cdot \frac{\frac{3 x}{1}}{\frac{x-y}{x y}}$
C) $\frac{y^{2}-x^{2}}{y+x} \cdot \frac{x-y}{3 x}$
D) $\frac{x^{2}-y^{2}}{\frac{x^{2} y^{2}}{\frac{y+x}{x y}}} \cdot \frac{\frac{1}{3 x}}{\frac{x-y}{3 x}}$
E) None of A) , B) , C), and D).
(5-83)
80
215

$$
\frac{\frac{y^{2}-x^{2}}{x^{2} y^{2}}}{\frac{y+x}{x y}} \cdot \frac{\frac{3 x}{1}}{\frac{x-y}{x y}}
$$

F) $\frac{y^{2}-x^{2}}{x^{2} y^{2}} \cdot \frac{x y}{y+x} \cdot \frac{3 x}{1} \cdot \frac{x y}{x-y}$
G) $\frac{y^{2}-x^{2}}{x^{2} y^{2}} \cdot \frac{y+x}{x y} \cdot \frac{3 x}{1} \cdot \frac{x-y}{x y}$
H) $\frac{y^{2}-x^{2}}{x^{2} y^{2}} \cdot \frac{x y}{y+x} \cdot \frac{1}{3 x} \cdot \frac{x y}{x-y}$

इ) $\frac{x^{2} y^{2}}{y^{2}-x^{2}} \cdot \frac{y+x}{x y} \cdot \frac{1}{3 x} \cdot \frac{x-y}{x y}$
K) None of $F(G), H$), and J).
$(5-83 M)$
$216 \frac{x y}{x-y}=$
L) $\frac{x y}{-(x+y)}$
M) $\frac{x y}{-(x-y)}$
P) $\frac{x y}{-(y-x)}$
Q) None of L), M), an (P).
(5-83m,B)
(217) $\frac{y^{2}-x^{2}}{x-y}=$
R) $y-x$
S) $y+x$
T) $-(y-x)$
U) None of R), S), and T).
(218) $(6-86 \mathrm{M})$ COMPLEX NUMBERS: $\quad i=$
B) $-i$
C) $\sqrt{-1}$
D) $(\sqrt{-1})^{2}$
E) None of A) , B) , C), and D).

$$
219 \text { (} 6-86 \mathrm{~m}) \dot{\iota}^{2}=\text { (COMPLEX NUMBERS) }
$$

A) -1
B) $-i$
C) $\sqrt{-1}$
D) 1
E) None of A) , B), C), and D).
(6-86m) COMPLEX NUMBERS
(220) $i^{12}=$
F) i
6) $-i$
H) 1
J) -1
K) None of (F), G), H), and J)
(6-86M) COMPLEX NUMEERS
(221) $i^{15}=$
L) i
M) $-i$
e) 1
p) -1
R) None of $(1), M), \theta)$, and P).
(6-86M) COMPLEX NUMBERS
(222) $i^{97}=$
s) i
T) $-i$
u) 1
w) -1
X) None of S),T) (4), and (ω).
(6-87T) COMPLEX NUMBERS
223 WHAT IS THE IMAGINARY PART OF $5-\frac{1}{2} i$?
A) $-\frac{1}{2}$
B) $-\frac{1}{2} i$
C) $\frac{1}{2}$.
D) $\frac{1}{2} i$
E) None of A) , B) , C), and D).
(6-87T) COMPLEX NUMBERS
224 WHAT IS THE REAL PART OE $3+4 i$?
F) 3
G) 4
H) $4 i$
J) $4(-1)$
K) None of F), G), H), and T).
($6-87 \mathrm{M}$) COMPLEX NUMBERS
225 AN IMAGINARY NUMBER IS A COMPLEX NUMBER
L) WHOSE REAL PART IS NEGATIVE
M) WHOSE IMAGINARY PART IS ALWAYS NEGATIVE.
P) THAT IS NOT REAL.
Q) None of L), M), and P).
(6-87B) COMPLEX NUMBERS
(226) A PURE IMAGINARY NUMBER IS A COMPLEX NUMBER
R) WHERE IMAGINARY PART IS NOT A FRACTION
S) Where the imaginary part is not irrational.
T) WHERE THE REAL PART IS ZERO AMD THE imaginary part is not zero.
U) None of R), S), and T).
($6-87 \mathrm{M}$) COMPLEX NUMBERS
227 TRUE OR FALSE: Every real number is complex.
T) TRUE
F) FALSE
(6-87B) COMPLEX NUMBERS
(228) TRUE OR FALSE: $i \sqrt{3}=\sqrt{3 i}$
T) TRUE
f) FALSE
(6-88M) COMPLEX NUMBERS
$229(4+3 i)+\left(2-\frac{1}{3} i\right)=$
A) $7 i+\left(2-\frac{1}{3}\right) i$
B) $6+\frac{8}{3} i$
C) $6-8 / 3 i$
D) None of A), B), and C).
($6-88 B$) COMPLEX NUMBERS
(230) $\left(\frac{4}{3}-\frac{5}{6} i\right)-\left(\frac{1}{4}-\frac{2}{3} i\right)=$
E) $\frac{3}{2}-\frac{7}{3} i$
F) $\frac{13}{2}-\frac{1}{6} i$
G) $\frac{13}{2}+\frac{1}{6} i$
H) $-\frac{3}{2}+\frac{7}{3} i$
J) None of $E(F), G)$, and H).
(6-89 T) COMPLEX NUMBERS
23i) $(3+2 i)(5-3 i)=$
k) $15-6(-1)$
L) $15-3(-1)+10(-1)-6(-1)$
M) $15-9 i+10 i-6(-1)$
p) None of K), L), and M).
(6-89T) COMPLEX NUMBERS
(232 $\overline{3+2 i}=$
Q) $3-2(-1)$
R) $3-2 i$
s) $3+2 i$
T) None of $Q(R)$, and S).
(6-89M) COMPLEX NUMBERS
(233) $\overline{5}=$
U) 5
w) -5
$z)$ None of u) and w
(6-89B) COMPLEX NUMBERS
(234) $\overline{-3 i}=$
A) $-3 \hat{i}$
B) $3 i$
C) None of A) and B).
(6-89B) COMPLEX NUMBERS
(235) $\overline{\bar{z}}=$
D) z
E) $-z$
F) $z+i$
G) $z-i$
H) None of $D 1, E), F)$, and G).
(6-89B) COMPLEX NUMBERS
(236) Let $z=3+2 i$ and $\omega=4+5 i$.
$\overline{z+\overline{z+\omega}}=$
丁) $7-3 i$
K) $10+3 i$
L) $10-5 i$
M) $10+5 i$
N) None of $J, K), L$), and M).
(6-91 T) COMPLEX NUMBERS
237) True or false: $\frac{2+3 i}{5+4 i}=\frac{2}{5}+\frac{3 i}{4 i}$
T) True
F) False
(6-91M) COMPLEX NUMBERS
$238 \frac{4+3 i}{2+5 i}=$
Q) $2+\frac{3}{5} i$
P) $\frac{7 i}{7 i}$
R) $\frac{23}{29}+\left(\frac{-14}{29}\right) i$
S) $\frac{23}{29}+\frac{14}{29} i$
T) $\frac{23}{29}+\frac{-26}{29} i$
U) $\frac{23}{29}+\frac{26}{29} i$
w) None of $\theta(P), R), S), T$), and U)
(6-91B) COMPLEX NUMBERS
(239) $\frac{7-3 i}{4 i}=$
A) $\frac{7}{4}-\frac{3}{4} i$
B) $\frac{7}{4}+\frac{3}{4} i$
C) $\frac{-3}{4}+\frac{7}{4} i$
D) $-\frac{3}{4}-\frac{7}{4} i$
E) None of A),$B), C$), and D).
(6-92) COMPLEX NUMBERS
(240) Which derivation sequence is totally correct?

$$
\frac{\sqrt{3}-i \sqrt{2}}{\sqrt{5}+i \sqrt{3}}=
$$

F) $\frac{\sqrt{3}-i \sqrt{2}}{\sqrt{5}+i \sqrt{3}} \cdot \frac{\sqrt{5}+i \sqrt{3}}{\sqrt{5}+i \sqrt{3}}=\frac{\sqrt{15}-3 i-i \sqrt{10}+i^{2} \sqrt{6}}{5-i 3}$
G) $\frac{\sqrt{3}-i \sqrt{2}}{\sqrt{5}+i \sqrt{3}} \cdot \frac{\sqrt{5}+i \sqrt{3}}{\sqrt{5}+i \sqrt{3}}=\frac{\sqrt{15}-3 i-i \sqrt{10}+i^{2} \sqrt{6}}{5-i^{2} 3}$
H) $\frac{\sqrt{3}-i \sqrt{2}}{\sqrt{5}+i \sqrt{3}} \cdot \frac{\sqrt{5}-i \sqrt{3}}{\sqrt{5}-i \sqrt{3}}=\frac{\sqrt{15}-3 i-i \sqrt{10}+i^{2} \sqrt{6}}{5-3 i^{2}}$
J) $\frac{\sqrt{3}-i \sqrt{2}}{\sqrt{5}+i \sqrt{3}} \cdot \frac{\sqrt{5}-i \sqrt{3}}{\sqrt{5}-i \sqrt{3}}=\frac{\sqrt{15}-3 i-i \sqrt{10}+i^{2} \sqrt{6}}{(\sqrt{5}-i \sqrt{3})^{2}}$
K) None of F), G), H), and ().
(6-92 m) COMPLEX NUMBERS
(241) $\frac{\sqrt{15}-3 i-i \sqrt{10}+i^{2} \sqrt{6}}{5-3 i^{2}}$
L) $\frac{\sqrt{15}-(3-i \sqrt{10})+(-1) \sqrt{6}}{5-3(-1)}$
m) $\frac{\sqrt{15}+(-3-\sqrt{10}) i+(-1) \sqrt{6}}{5-3(-1)}$
p) $\frac{\sqrt{15}+(-3-\sqrt{10}) i-(-1) \sqrt{6}}{5-3(-1)}$
Q) $\frac{\sqrt{15}-(-3-\sqrt{10}) i+(-1) \sqrt{6}}{5-3(-1)}$
R) None of L),M) P), and Q).
(6-92) COMPLEX NUMBERS
(242) $\frac{\sqrt{3}-i \sqrt{2}}{\sqrt{5}+i \sqrt{3}}=$
5) $\frac{\sqrt{15}-\sqrt{6}}{8}+\frac{(-3-\sqrt{10})}{8} i$
T) $\frac{\sqrt{15}+\sqrt{6}}{8}+\frac{(3-\sqrt{10})}{8} i$
v) $\frac{\sqrt{15}+\sqrt{6}}{8}+\frac{(-3-\sqrt{10})}{8} i$
w) $\frac{-\sqrt{15}+\sqrt{6}}{8}+\frac{(-3-\sqrt{10})}{8} i$
$x)$ None of 5), T), u), and (ω).
(6-93T) COMPLEX NUMBERS
(243) $\sqrt{-9}=$
A) -3
B) $3 i$
C) $-3 i$
D) None of A) , B), and C).
(6-93T) COMPLEX NUMBERS
(244) $\sqrt{-7}=$
E) $-\sqrt{7}$
F) $-7 i$
G) $7 i$
H) None of $E), E)$, and G).
(6-93M) COMPLEX NUMBERS
(245) True or false: For all real numbers $a, b, \quad \sqrt{a b}=\sqrt{a} \sqrt{b}$
T) True
F) False
(6-93B) COMPLEX NUMBERS
(246) $\sqrt{-8}(\sqrt{8}-\sqrt{-2})=$
J) $-4+8 i$
K) $4+8 i$
l) $4-8 i$
M) $-4-8 i$
P) None of J), K), L), and M).
(6-93B) COMPLEX NUMBERS
(247) which derivation is correct?
$(\sqrt{3}-\sqrt{-2})(\sqrt{3}+\sqrt{-5})=$
Q) $\sqrt{9}+\sqrt{-15}-\sqrt{-6}-\sqrt{10}$
R) $\sqrt{9}+\sqrt{-15}+\sqrt{6}+\sqrt{10}$
S) $(\sqrt{3}-i \sqrt{2})(\sqrt{3}+i \sqrt{5})=3+i \sqrt{15}-i \sqrt{6}-i^{2} \sqrt{10}$
T) $(\sqrt{3}-i \sqrt{2})(\sqrt{3}+i \sqrt{5})=3+i \sqrt{15}+i \sqrt{6}+i^{2} \sqrt{10}$
u) None of Q) , R), s), an (τ).
(6-93 B) COMPLEX NUMBERS
(248) $(\sqrt{3}-i \sqrt{-2})(\sqrt{3}+\sqrt{-5})=$
A) $(3+\sqrt{10})+(\sqrt{15}-\sqrt{6}) i$
B) $(3-\sqrt{10})+(\sqrt{15}-\sqrt{6}) i$
C) $(3-\sqrt{10})+\sqrt{11} i$
D) $(3+\sqrt{10})+\sqrt{11} i$
E) None of A), B), C), and
D).
(6-95 T)
(249) which of the following is an equation?
F) $2 x-3$
G) $2 x-3=0$
H) None of E) and 6).
(6-95 B)
92
(250) Name the solution set for $x+4=7$

ま) 3
k) $\{3\}$
L) $\}$
M) None of J) K), and L).
(6-95B)
(251) Name the solution set for $x^{2}=4$.
N) ± 2
-) $\{2\}$
P) $\{-2,2\}$
R) $\}$
S) None of N) $(\theta), P$) and R.
(6-95B)
(252) To soLVE an equation it means
T) Find a value for x that works.
u) Find a solution set
$w)$ None of T), U), and ω).
$(7-96 T)$
253 An identity is an equation that
A) is true for all values for which both sides of the equation are defined.
B) has no solution.
C) is true for at least one, but not all values for which both sides of the equation are define d.
D) None of A), B), and C)
$(7-96 M)$
(254) An inconsistent equation
E) is true for all values for which both sides of the equation are defined.
F) has no solution
G) is true for at least one, but not all values for which both sides of the equation are defined.
H) None of E) , F), an θ ().
(7-96B)
(255) A conditional equation
J) is true for all values for which both sides of the equation are define θ.
k) has no solution.
L) is true for at least one, but not all values for which both sides of the equation are defined
m) None of J), k), and L).
$(7-96 B)$
(256) At times what word is used to mean the the same thing as solution?
N) Root
O) Derivation
P) Identity
R) None of N), θ), an (P).
(7-97T)
94
(257) Equivalent equations have the same
s) Look
T) Structure
u) Solution set
w) None of S), T), and U).
(7-97m)
(258) Which equation is equivalent to $2 x+1=7$?
A) $2 x+1=3$
B) $2 x+1-1=7-1$
C) $x=2$
D) $(2 x+1) \cdot 0=7 \cdot 0$
E) None of $A), B), C)$, an θ).
(7-97B)
(259) Which equation is equivalent to

$$
x^{2}-6 x=x-12 ?
$$

F) $x^{2}-5 x-12=0$
G) $x^{2}-7 x+12=0$
t) $x^{2}-7 x-12=0$

Ј) $x^{2}+5 x-12=0$
(7-98B)
(260) which equation is equivalent to $5 x-3=2 x+7$?
k) $5 x-3+7=2 x$
L) $5 x+2 x=-3+7$
M) $-2 x+5 x-3=7$
Q) $-3=5 x+2 x+7$
p) None of $(k), L$),M), and θ).
(7-98B)
(261) What is the solution set for $5 x-3=2 x+7$?
Q) $\left\{\frac{4}{3}\right\}$
R) $\{-4 / 3\}$
S) $\left\{\frac{10}{3}\right\}$
T) $\{-10 / 3\}$
U) None of Q), R), S), and T).
$(7-99 T)$
262 what is equivalent to

$$
5(2 x-1)(x+4)=(10 x-1)(x+3)
$$

A) $5\left(2 x^{2}+8 x-4\right)=10 x^{2}+30 x-3$
B) $5\left(2 x^{2}+8 x-x-4\right)=10 x^{2}+30 x-x-3$
C) $(10 x-5)(5 x+20)=(10 x-1)(x+3)$
D) None of A) , B), and C).
(7-99T)
96
(263) The solution set for $5(2 x-1)(x+4)=(10 x-1)(x+3)$ is
E) $\left\{\frac{17}{6}\right\}$
F) $\left\{-\frac{12}{6}\right\}$
G) $\left\{\frac{23}{6}\right\}$
H) $\left\{-\frac{23}{6}\right\}$
J) None of E),$F), G$), and H).
(264) The solution set for

$$
5\left(2 x^{2}+7 x-4\right)=10 x^{2}+29 x-3 \text { is }
$$

k) $\left\{\frac{17}{64}\right\}$
L) $\{-1764\}$
M) $\{-23 / 6\}$
P) $\{-17 / 6\}$
Q) None of $(K), 4), M)$, an (P).
(7-99B)
265 The solution set for
$3 b-2 x+7=5 x-b x$ is ($\left.\begin{array}{l}x \text { is the unknow, } \\ \text { not } b\end{array}\right)$
R) $\left\{\frac{3 b-7}{7-b}\right\}$ $b \neq 7$
5) $\left\{\frac{3 b+7}{7-b}\right\}$
T) $\left\{\frac{7+b}{3 b-7}\right\}$
v) $\left\{\frac{7-b}{3 b-7}\right\}$
w) None of R) , S) , T), and 0).
(7-99B)
(266) What equation is equivalent to $3 b-2 x+7=5 x-b x ?$
A) $7 x+b x=-3 b-7$
B) $-7 x+b x=-3 b-7$
C) $-7 x+b x=-3 b+7$
D) $-7 x+b x=3 b-7$
E) None of A) , B), C), and D).
($7-101 T$)
(267) When multiplying or dividing an equation by an expression that could be zero, you need to remember to
F) square both sides
G) put t in front of the answer
H) check your answer
J J) subtract x from both sides
K) None of $F(, G), H)$, and J).
(7-101)
(268) The solution set for

$$
\frac{x}{x-4}+2=\frac{4}{x-4}
$$

L) $\{4\}$
m) $\}$
p) $\{0\}$
Q) $\{-2\}$
R) None of $(1), M), P$), an Q Q).
(7-101T)
(269) An equation equivalent to $(x-4)\left[\frac{x}{x-4}+2\right]=(x-4) \frac{4}{x-4}$ is
s) $\frac{(x-4) x}{x-4}+2=4$
T) $\frac{(x-4) x}{x-4}+(x-4) 2=4$
i) $\frac{(x-4) x}{x-4}+(x-4) 2=(x-4) 4$
W) $x+2=4$
x) None of S), τ), U), and W).
(7 -101B)
(370) When in the process of solving an equation, you multiply both sides by an expression that could be 0 , you thencheck your supposed answer. If the supposed answer does not work, then the supposed answer is
A) an identity
B) a conditional
C) an extraneous solution
D) a conjugate
E) None of (A) , B) , C), and D).
(7-1017)
271 In solving $\frac{x}{x-4}+2=\frac{4}{x-4}$, you can multiply both sides by $x-4$ and then eventually get $x=4$. Remembering to check your answer, you substitute 4 in for x in the left side of the equation to get
F) $\frac{4}{4-4}+2=\frac{4}{0}+2=0+2=2$
6) $\frac{4}{4-4}+2$ which is undefined
H) $\frac{4}{4-4}+2=1+2=3$
$J)$ None of F), G), and H).
$(7-102 T)$
(272) The equation $\frac{y}{y+3}+4=\frac{5}{y+3}$ is equivalent to
K) $y+4=5$
L) $y+4 y+4=5$
M) $y+4 y+12=5$

ө) $y+4 y+4=5 y+15$
(7-102M) $\quad 100$
(273) Starting with $\frac{(y+3) y}{y+3}+(y+3) 4=5$ and isolating y gives $y=$
p) $\frac{25}{8}$
Q) $\frac{7}{5}$
R) $-2 / 5$
S) $-25 / 8$
T) None of $(P), Q), R)$, and S).
(7-102)
274 In solving $\frac{y}{y+3}+4=\frac{5}{y+3}$, you can multiply both sides by $y+3$ and then eventually get $y=\frac{-7}{5}$. Remembering to check your answer, you substitute $\frac{-7}{5}$ in for y in the left side of the original equation and get a value of
A) $\frac{-7}{8}$
B) $\frac{7}{8}$
C) $\frac{39}{8}$
D) $\frac{-3 q}{8}$
E) $\frac{25}{8}$
F) $-\frac{25}{8}$
G) None of these
(7-102)
(275) The solution set for $\frac{y}{y+3}+4=\frac{5}{y+3}$ is
H) $\left\{-\frac{7}{5}\right\}$
H) $\left\{\frac{-7}{5}\right\}$
J) $\left\{\frac{7}{5}\right\}$
k) $\left\{\frac{25}{8}\right\}$
L) $\left\{\frac{-25}{8}\right\}$
m) $\}$
$\theta)$ None of $(H), J), K), L$), and M).
$(7-105 T)$
(276) The solution set for $|x|=3$ is
P) 3
Q) $\{3\}$
R) $\{-3,3\}$
S) ± 3
T) None of P),$Q), R$), and S).
(7-105 M)
(277) The solution set for $x^{2}=8 \mathrm{is}$
u) $\{2 \sqrt{2}\}$
w) $\{-2 \sqrt{2}, 2 \sqrt{2}\}$
x) $\sqrt{8}$
z) None of $(U), \omega$), and X)
(278) The solution set for $(x-3)^{2}=5$ is
A) $\{3+5,3-5\}$
B) $\{3+5\}$
C) $\{3+\sqrt{5}, 3-\sqrt{5}\}$
D) $\{3+\sqrt{5}\}$
E) None of $A(B), C)$, and D).
$(7-\cos B)$
(279) $\sqrt{(x-3)^{2}}=$
F) $x-3$
G) $|x-3|$
H) $\sqrt{|x-3|}$
J) None of F), G), and H).
$(7-106 T)$
(280) The solution set for $(x+2)^{2}=16$ is
k) $\{2,-6\}$
L) $\{-2,6\}$
M) $\{2\}$
p) $\{-6\}$
R) None of $(k), L), M)$, and P).
($7-106 \mathrm{M}$)
103
(281) The solution set for $\left(x+\frac{1}{2}\right)^{2}=-27$ is
5) $\left\{\frac{1}{2}+3 i \sqrt{3}, \frac{1}{2}-3 i \sqrt{3}\right\}$
T) $\left\{-\frac{1}{2}-27,-\frac{1}{2}+27\right\}$
u) $\left\{-\frac{1}{2}+3 i \sqrt{3},-\frac{1}{2}-3 i \sqrt{3}\right\}$
w) $\left\{-\frac{1}{2}-27 i,-\frac{1}{2}+27 i\right\}$
$x)$ None of 5$), T), U$), and ω).
$(7-106 \mathrm{M})$
(282) If you know $\left(x+\frac{1}{2}\right)^{2}=-27$, then which of the following must be true?
A) $x+\frac{1}{2}=-27$
B) $x+1 / 2= \pm 27$
C) $x+v_{2}=\sqrt{-27}$
D) $x+\frac{1}{2}= \pm \sqrt{-27}$
E) None of A) , B) , C), and D).
(7-106B)
283 If $(x-2)(x-3)=0$, then which of the following must be true?
F) $x-2=0$
G) $x-2=0$ OR $x-3=0$
H) $x-2=0$ AND $x-3=0$
J) $x-3=0$
K) None of $F(, G), H$), and J).
$(7-107 T)$
104
(284) Solve $8 x^{2}-2 x-15=0$. The solution set is
L) $\{8,-15\}$
m) $\left\{-\frac{3}{2}, \frac{5}{4}\right\}$
o) $\left\{-\frac{5}{4}, \frac{3}{2}\right\}$
p) $\{-2 / 3,5\}$
R) $\{2 / 3,-4 / 5\}$
S) None of $(4), M), \theta), P$), and R).
(7-107m)
(285) $x^{2}+x+1$ can be factored into
$\left(x-\left[\frac{-1+i \sqrt{3}}{2}\right]\right)\left(x-\left[\frac{-1-i \sqrt{3}}{2}\right]\right)_{0}$ So the solution
set for $x^{2}+x+1=0$ Ls
T) $\left\{-\left[\frac{-1+i \sqrt{3}}{2}\right],-\left[\frac{-1-i \sqrt{3}}{2}\right]\right\}$
u) $\left\{\frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2}\right\}$
w) $\left\{\frac{i \sqrt{3}}{2},-\frac{i \sqrt{3}}{2}\right\}$
x) $\{+1,-1\}$
$z)$ None of $\tau),(u), \omega$), and x).
(7-107T)
105
(286) When you know $(2 x-3)(4 x+5)=0$, which of the following is true?
A) $2 x-3=0$ OR $4 x+5=0$.
B) $2 x-3=0$ AND $4 x+5=0$.
$(7-108 T)$
(287) $x^{2}+6 x+9=$
C) $(x+9)^{2}$
D) $(x+6)^{2}$
E) $(x+3)^{2}$
F) None of (C), D), and E).
(7-108T)
(288) $x^{2}-8 x+16=$
G) $(x+8)^{2}$
H) $(x-8)^{2}$
J) $(x-4)^{2}$
K) $(x+4)^{2}$
L) None of G) , H), J), and K).
$(z-108 \mathrm{M})$
(289) $x^{2}-\frac{2}{3} x+\frac{1}{9}=$
M) $\left(x-\frac{2}{3}\right)_{2}^{2}$
P) $(x+2 / 3)^{2}$
Q) $\left(x-\frac{1}{9}\right)^{2}$
$R)$ None of M), P), and Q).
(7-108B)
106
(290) What do you fill in the blank with to make $x^{2}+10 x+$ \qquad a perfect square?
s) 5
T) 25
(U) -5
w) -25
X) None of S), T), U), and (T).
(7-108B)
(291) What do you fill in the blank with to make $x^{2}-\frac{5}{3} x+$ \qquad a perfect square?
A) $\frac{25}{36}$
B) $-\frac{25}{36}$
C) $\frac{5}{6}$
D) $-5 / 6$
E) None of A) , B) , C), and D).
(7-109 T)
(292) As taught, the 1 st step to solve $2 x^{2}+12 x+4=0$ by the complete the square process is to have the line
F) $x^{2}+12 x+4=0$
G) $x^{2}+6 x+4=0$
H) $x^{2}+6 x+2=0$
J) None of F), G), and H).
(7-109)
(293) The first steps, as taught, to solve $2 x^{2}+12 x+4=0$ by the complete the square process are.

$$
\begin{aligned}
& x^{2}+6 x+2=0 \\
& x^{2}+6 x=-2
\end{aligned}
$$

What is the next line, as taught?
k) $x^{2}+6 x+3=-2+3$
4) $x^{2}+6 x+9=-2$
m) $x^{2}+6 x+9=-2+9$
P) $x^{2}+6 x=-2+9$
Q) None of k) , L), M), and P).
(7-109)
(294) Solving $2 x^{2}+12 x+4=0$ by the complete the square process proceeds

$$
\begin{aligned}
& x^{2}+6 x+2=0 \\
& x^{2}+6 x=-2 \\
& x^{2}+6 x+9=-2+9
\end{aligned}
$$

What is the next step as taught?
R) $(x+3)^{2}=7$
S) $(x+6)^{2}=7$
T) $(x+9)^{2}=7$
U) $(x+3)^{2}=9$
w) None of R), 5$), T$), and U).
(295) In solving $2 x^{2}+12 x+4=0$ by the complete the square process, the step $(x+3)^{2}=7$ is derived. What is the solution set?
A) $\{-\sqrt{7}, \sqrt{7}\}$
B) $\{3+\sqrt{7}, 3-\sqrt{7}\}$
C) $\{-3+\sqrt{7},-3-\sqrt{7}\}$
D) $\{-3+7,-3-7\}$
E) None of A) , B) , C), and D).
(7-110m)
(296) As taught, the 1 st step to solve $-3 x^{2}+9 x-5=0$ by the complete the square process is to have the line
F) $x^{2}+9 x-5=0$
G) $x^{2}+3 x-5=0$
H) $x^{2}-3 x-5=0$
J) $x^{2}-3 x-\frac{5}{3}=0$
k) $x^{2}+3 x-5 / 3=0$
L) $x^{2}-3 x+5 / 3=0$
M) None of $F(, G), H), j), K$), and L)
(7-110 m)
(297) The first steps, as taught, to solve $-3 x^{2}+9 x-5=0$ by the complete the square process are:

$$
\begin{aligned}
& x^{2}-3 x+\frac{5}{3}=0 \\
& x^{2}-3 x=-\frac{5}{3}
\end{aligned}
$$

What is the next line, as taught?
N) $x^{2}-3 x+\frac{9}{4}=\frac{-5}{3}+\frac{9}{4}$
P) $x^{2}-3 x-\frac{9}{4}=-\frac{5}{3}-\frac{9}{4}$
Q) $x^{2}-3 x+\frac{3}{2}=-\frac{5}{3}+\frac{3}{2}$
R) $x^{2}-3 x-\frac{3}{2}=-\frac{5}{3}-3 / 2$
S) None of $N(P), Q$), and R).
(7-110B)
(298) In solving $-3 x^{2}+9 x-5=0$ by the complete the square process, the step $\left(x-\frac{3}{2}\right)^{2}=\frac{7}{12}$ is derived. What is the solution set?
A) $\left\{\frac{3}{2}+\frac{7}{12}, \frac{3}{2}-\frac{7}{12}\right\}$
B) $\left\{-\frac{3}{2}+\frac{7}{12},-\frac{3}{2}-7 / 12\right\}$
C) $\left\{\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3}}, \frac{3}{2}-\frac{1}{2} \sqrt{7 / 3}\right\}$
D) $\left\{-\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3}},-\frac{3}{2}-\frac{1}{2} \sqrt{7 / 3}\right\}$
E) None of A), B), C), and D).
$(7-111 T)$
(299) The first steps, as taught, to solve $x^{2}+x+1=0$
by the complete the square process are:

$$
\begin{aligned}
& x^{2}+x+1=0 \\
& x^{2}+x=-1 .
\end{aligned}
$$

What is the next line, as taught?
F) $x^{2}+x+\frac{1}{2}=-1+1 / 2$
G) $x^{2}+x-1 / 2=-1-1 / 2$
H) $x^{2}+x-1=-1-1$
J) $x^{2}+x+1 / 4=-1$
K) None of $(\bar{F}), G), H$), and σ).
(7-111)
(300) In solving $x^{2}+x+1=0$ by the complete the square process, the step $\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}$ is derived. What is the solution set?
L) $\left\{\frac{1}{2}-\frac{3}{4}, \frac{1}{2}+\frac{3}{4}\right\}$
M) $\left\{-\frac{1}{2}-\frac{3}{4},-1 / 2+\frac{3}{4}\right\}$
P) $\left\{\frac{1}{2}-\sqrt{\frac{3}{4}}, \frac{1}{2}+\sqrt{\frac{3}{4}}\right\}$
Q) $\left\{-\frac{1}{2}-\sqrt{\frac{3}{4}},-\frac{1}{2}-\sqrt{\frac{3}{4}}\right\}$
R) $\left\{\frac{-1+i \sqrt{3}}{2},-\frac{1-i \sqrt{3}}{2}\right\}$
S) $\left\{\frac{1+i \sqrt{3}}{2}, \frac{1-i \sqrt{3}}{2}\right\}$
T) None of L),M),$P), Q), R$), and S).
(7-111 M, B)
(301) The solution set for $x^{2}+x+1=0$ is $\left\{\frac{-1+i \sqrt{3}}{2}, \frac{-1-i \sqrt{3}}{2}\right\}$, so $x^{2}+x+1$ factors into
v) $\left(x+\left[\frac{-1+i \sqrt{3}}{2}\right]\right)\left(x+\left[\frac{-1-i \sqrt{3}}{2}\right]\right)$
w) $\left(x-\left[\frac{-1+i \sqrt{3}}{2}\right]\right)\left(x-\left[\frac{-1-i \sqrt{3}}{2}\right]\right)$
x) $(2 x-[-1+i \sqrt{3}])(2 x-[-1-i \sqrt{3}])$
$z)$ None of $(U), \omega$), and X).
(7-112)
(302) The solution set for $-3 x^{2}+9 x-5=0$ is $\left\{\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3}}, \frac{3}{2}-\frac{1}{2} \sqrt{\frac{7}{3}}\right\}$, so $-3 x^{2}+9 x-5$ factors into
A) $\left(x+\left[\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3}}\right]\right)\left(x+\left[\frac{3}{2}-\frac{1}{2} \sqrt{\frac{7}{3}}\right]\right)$
B) $\left(x-\left[\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3}}\right]\right)\left(x-\left[\frac{3}{2}-\frac{1}{2} \sqrt{\frac{7}{3}}\right]\right)$
C) $-3\left(x+\left[\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3}}\right]\right)\left(x+\left[\frac{3}{2}-\frac{1}{2} \sqrt{\frac{7}{3}}\right]\right)$
D) $-3\left(x-\left[\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3}}\right]\right)\left(x-\left[\frac{3}{2}-\frac{1}{2} \sqrt{7} / 3\right]\right)$
E) None of A) , B), C), and D).
$(7-114 T)$
(303) The quadratic formula for solving $a x^{2}+b x+c=0$ is
F) $x=\frac{-b \pm \sqrt{b^{2}+4 a c}}{2 a}$
G) $x=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}$
H) $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

च) $b^{2}-4 a c$
k) None of $F(, G), H)$, and J).
$(2-115 T)$
304 Solving $-3 x^{2}+9 x-5=0$ by the quadratic formula gives the solution set
L) $\left\{\frac{-9+\sqrt{21}}{-6}, \frac{-9-\sqrt{21}}{-6}\right\}$
M) $\left\{\frac{-9+\sqrt{21}}{6}, \frac{-9-\sqrt{21}}{6}\right\}$
P) $\left\{\frac{9+\sqrt{21}}{-6}, \frac{9-\sqrt{21}}{-6}\right\}$
Q) $\left\{q^{2}-4(-3)(-5)\right\}$
R) None of L), M) P), and Q).
(7-115B)
(305) By continuing in $\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3}}=\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3} \cdot \frac{3}{3}}=\ldots$,
$\frac{3}{2}+\frac{1}{2} \sqrt{\frac{7}{3}}$ can be changed into the form
5) $\frac{-9+\sqrt{21}}{-6}$
T) $\frac{-9-\sqrt{21}}{-6}$
v) $\frac{q+\sqrt{21}}{-6}$
w) $\frac{9-\sqrt{21}}{-6}$
$x)$ None of $(S), T),(0), \omega$)
(7-115B)
(306) 3 methods studied for solving quadratic equations were
A) factor, check your answer, extraneous
B) extraneous, complete the square, quadratic formula.
C.) Complete the square, common denominate, quadratic formula.
D) factor, complete the square, common denominate
E) factor, complete the square, quadratic formula.
$F)$ None of A) , B) , C) , D), and E).
$(7-116 T)$
(307) Solving $x^{2}-6 x+9=0$ by the quadratic formula gives
G) $x=3$
H) $x= \pm 3$
J) $x=6$
K) $x= \pm 6$
L) None of $G(, H), ~ J)$, and K).
(7-116 B)
308 Solving $x^{2}+x+1=0$ by the quadratic formula gives
M) $x=\frac{-1 \pm \sqrt{1}}{2}$
P) $x=\frac{-1 \pm \sqrt{3}}{2}$
Q) $x=\frac{1 \pm i \sqrt{3}}{2}$
R) $x=\frac{-1 \pm i \sqrt{3}}{2}$
5) None of M) P),Q), and R).
$(7-117 T)$
309) The discriminant involved with $a x^{2}+b x+c=0$ is
T) $b^{2}+4 a c$
U) $b^{2}-4 a c$
w) $-b \pm 4 a c$
x) $b^{2}+2 a$
z) None of $(\tau),(u), \omega)$, and X).
(2-117T)
(310) For $a x^{2}+b x+c=0$, when the discriminant is positive, there are
A) 2 real solutions
B) one real solution of multiplicity two
C) 2 imaginary solutions.
D) None of A), B), and C).
(7-117T)
311 For $a x^{2}+b x+c=0$, when the discriminant is zero,
E) there are 2 real solutions:
E) there s only one real solution of multiplicity two
6) there are 2 imaginary solution
H) None of $E), F$) and G).
(7-117M)
(312) For $a x^{2}+b x+c=0$, when the discriminant is negative, there are
J) 2 real solutions
k) only one real solution of multiplicity two
L) 2 imaginary solutions
M) None of J) , K), an (L).
($7-117 B$)
($313-117 B)$ what is the discriminant for $-3 x^{2}+9 x-5=0$?
N) 141
P) -21
Q) +21
R) 15
S) None of N) $(P), Q$), and R).
(7-119T) COMPLEX NUMBERS ALLOWED IN THE SOLUTION
(314) Solving by factoring $x^{3}+4 x^{2}+2 x+8=0$ gives
T) $\{-4, i \sqrt{2},-i \sqrt{2}\}$
U) $\{-4,2,-2\}$
w) $\{4,2 i,-2 i\}$
X) $\{-4,2 i,-2 i\}$
Z) None of T), $($), ω), and X).
$(7-119 \tau) x^{3}+4 x^{2}+2 x+8$ factors into
315
A) $(x+2)^{3}$
B) $(x+2)\left(x^{2}+2\right)$
C) $(x+4)\left(x^{2}+4\right)$
D) $(x+4)\left(x^{2}+2\right)$
E) None of A),$B), C$), and $D)$.
(7-119 $)$ Factoring $b^{2 / 3}$ out of $b^{1 / 3}: b^{7 / 3}=b^{2 / 3} \cdot$
Fill in the blank with
F) b^{5}
G) $b^{7 \cdot \frac{3}{2}}$
H) $b^{\frac{7}{2}}$
J) $b^{5 / 2}$
k) None of $F(, G), H$), and J).
(7-119B)
(317) Factoring $b^{-\frac{1}{5}}$ out of $b^{\frac{4}{5}}: b^{\frac{4}{5}}=b^{-1 / 5}$

Fill in the blank with
L) $b^{3 / 5}$
M) $b^{-3 / 5}$
e) b
P) b^{-4}
R) None of L),$M), \theta$), and P).
(7-119B)
(318) Factoring $b^{-\frac{1}{5}}$ out of $b^{\frac{4}{5}}: b^{\frac{4}{5}}=b^{-\frac{1}{5}} \cdot b^{\frac{4}{5}}$

Fill in the box \square with.
S) $-\frac{1}{5}$
T) $\frac{1}{5}$
U) $\frac{4}{5}$
w) 1
x) None of S), T), U), and W).
$(7-119 A, T)$
(319) Factoring $(2 x+1)^{-\frac{1}{3}}$ out of $(2 x+1)^{2 / 3}$:

$$
(2 x+1)^{\frac{2}{3}}=(2 x+1)^{-\frac{1}{3}}(2 x+1)^{\frac{2}{3}-1}
$$

$E_{1 l}$ in the box \square with
A) $\frac{1}{3}$
B) $-\frac{1}{3}$
C) 1
D) $2 / 3$
E) None of A) , B) , C), and D).
$(7-119 A, M)$
$\left(320\right.$ Solving $\frac{7}{3}(x+3)^{\frac{5}{3}}(2 x-1)^{\frac{1}{6}}+\frac{5}{3}(2 x-1)^{\frac{7}{6}}(x+3)^{\frac{2}{3}}=0$ the first step taught was the factoring step $(x+3) \square_{(2 x-1)}\left[\frac{7}{3}(x+3)^{\frac{5}{3}-\frac{2}{3}}+\frac{5}{3}(2 x-1)^{\frac{7}{6}-\frac{1}{6}}\right]=0$
F) Fill in \square with $\frac{5}{3}$; fill in \square with $\frac{7}{6}$
G) FIll in \square with $5 / 3$; fill in Q with $1 / 6$
H) Fill in \square with $\frac{2}{3}$; fill in \rightarrow with $\frac{7}{6}$
J) Fill in \square with $\frac{2}{3}$; fill in O with $\frac{1}{6}$
K) None of $F(, G), H)$, and J).
$(7-119 \mathrm{~A}, \mathrm{M}) \quad 119$
(321) In solving $\frac{7}{3}(x+3)^{\frac{5}{3}}(2 x-1)^{\frac{1}{6}}+\frac{5}{3}(2 x-1)^{7 / 6}(x+3)^{\frac{2}{3}}=0$ the correct first factoring step was
L) $(x+3)^{\frac{2}{3}}(2 x-1)^{\frac{1}{6}}\left[\frac{7}{3}(x+3)^{\frac{5}{3}}+\frac{5}{3}(2 x-1)^{\frac{7}{6}}\right]=0$
M) $(x+3)^{2 / 3}(2 x-1)^{\frac{1}{6}}\left[\frac{7}{3}(x+3)^{\frac{5}{3}-\frac{2}{3}}+\frac{5}{3}(2 x-1)^{\frac{7}{6}-\frac{1}{6}}\right]=0$

ө) $\frac{7}{3}(x+3)^{2 / 3}(2 x-1)^{1 / 6}\left[(x+3)^{\frac{5}{3}}+\frac{5}{3}(2 x-1)^{7 / 6}\right]=0$
p) $\frac{7}{3}(x+3)^{2 / 3}(2 x-1)^{\frac{1}{6}}\left[(x+3)^{\frac{5}{3}-\frac{2}{3}}+\frac{5}{3}(2 x-1)^{\frac{7}{6}-1 / 6}\right]=0$
R) None of $(L), M), \theta)$, and P).
$(7-119 A, M, B)$
$322(x+3)^{\frac{2}{3}}(2 x-1)^{\frac{1}{6}}\left[\frac{7}{3}(x+3)+\frac{5}{3}(2 x-1)\right]=0$
simplifying this gives
5) $\frac{(x+3)^{2 / 3}}{(2 x-1)^{1 / 6}}\left[\frac{17}{3} x-\frac{16}{3}\right]=0$
T) $(x+3)^{2 / 3}(2 x-1)^{1 / 6}\left[\frac{17}{3} x-2\right]=0$
u) $(x+3)^{2 / 3}(2 x-1)^{1 / 6}\left[\frac{17}{3} x-\frac{16}{3}\right]=0$
w) $(x+3)^{\frac{2}{3}}(2 x-1)^{\frac{1}{6}}\left[\frac{17}{3} x+\frac{16}{3}\right]=0$
X) None of $S), T), U)$, an $\theta(\omega)$.
(7-119A, B) The solution set for
(323) $(x+3)^{2 / 3}(2 x-1)^{1 / 6}\left[\frac{17}{3} x+\frac{16}{3}\right]=0$ is
A) $\left\{-3,-\frac{16}{17}, 1 / 2\right\}$
B) $\left\{3, \frac{16}{17},-\frac{1}{2}\right\}$
C) $\left\{\frac{16}{17}\right\}$
D) $\left\{-\frac{16}{17}\right\}$
E) None of A) , B) , C), and D).
$(7-120$ T)
$324)$ Solving $\frac{6}{5}(2 x+1)^{2 / 3}(x+5)^{\frac{1}{5}}+\frac{4}{3}(x+5)^{\frac{6}{5}}(2 x+1)^{-1 / 3}=0$ the first step taught was the factoring step $(2 x+1) \square(x+5)\left[\frac{6}{5}(2 x+1)^{2 / 3-(-1 / 3)}+\frac{4}{3}(x+5)^{\left.\frac{6}{5}-\frac{1}{5}\right]}=0\right.$
F) Fill in \square with $-\frac{1}{3}$; fill in \longrightarrow with $\frac{6}{5}$.
G) Fill in \square with $-\frac{1}{3}$; fill in \longrightarrow with $\frac{1}{5}$.
H) FIll in \square with $2 / 3$; fill in \rightarrow with $\frac{6}{5}$.
J) Fill in \square with $\frac{2}{3}$; fill in \longrightarrow with $\frac{1}{5}$.
K) None of F), G), H), and J).

121
$(7-120 T)$
(325) In solving $\frac{6}{5}(2 x+1)^{\frac{2}{3}}(x+5)^{\frac{1}{5}}+\frac{4}{3}(x+5)^{\frac{6}{5}}(2 x+1)^{-\frac{1}{3}}=0$ the correct first factoring step was
L) $\frac{6}{5}(2 x+1)^{-\frac{1}{3}}(x+5)^{\frac{1}{5}}\left[(2 x+1)^{2 / 3}+\frac{4}{3}(x+5)^{\frac{6}{5}}\right]=0$
M) $\frac{6}{5}(2 x+1)^{-\frac{1}{3}}(x+5)^{\frac{1}{5}}\left[(2 x+1)^{\frac{2}{3}-\left(-\frac{1}{3}\right)}+\frac{4}{3}(x+5)^{\frac{6}{5}-\frac{1}{5}}\right]=0$
O) $(2 x+1)^{-\frac{1}{3}}(x+5)^{\frac{1}{5}}\left[\frac{6}{5}(2 x+1)^{2 / 3-\left(-\frac{1}{3}\right)}+\frac{4}{3}(x+5)^{\frac{6}{5}-\frac{1}{5}}\right]=0$
P) $(2 x+1)^{-\frac{1}{3}}(x+5)^{\frac{1}{5}}\left[\frac{6}{5}(2 x+1)^{2 / 3}+\frac{4}{3}(x+5)^{\frac{6}{5}}\right]=0$
$R)$ None of L), M) θ), and P).
$(326)(2 x+1)^{-\frac{1}{3}}(x+5)^{\frac{1}{5}}\left[\frac{6}{5}(2 x+1)^{\frac{2}{3}-\left(-\frac{1}{3}\right)}+\frac{4}{3}(x+5)^{\frac{6}{5}-\frac{1}{5}}\right]=0$
Simplifying this gives.
s) $\frac{(x+5)^{\frac{1}{5}}}{(2 x+1)^{-1 / 3}}\left[\frac{56}{15} x+\frac{118}{15}\right]=0$
T) $\frac{(x+5)^{1 / 5}}{(2 x+1)^{1 / 3}}\left[\frac{56}{15} x-\frac{118}{15}\right]=0$
v) $\frac{(x+5)^{\frac{1}{5}}}{(2 x+1)^{1 / 3}}\left[\frac{56}{15} x+\frac{118}{15}\right]=0$
w) $\frac{(x+5)^{\frac{1}{5}}}{(2 x+1)^{-1 / 3}}\left[\frac{56}{15} x-\frac{118}{15}\right]=0$
X) None of $S, T), U$), and ω).
(7 - $120 \mathrm{~m}, \mathrm{~B}$)
122
(327) The, solution set for

$$
\frac{(x+5)^{\frac{1}{5}}}{(2 x+1)^{\frac{1}{3}}}\left[\frac{56}{15} x+\frac{118}{15}\right]=0 \quad \text { is }
$$

A) $\left\{-5,-1 / 2,-\frac{59}{28}\right\}$
B) $\left\{5,1 / 2,5 \frac{1}{28}\right\}$
C) $\left\{-5,-\frac{5 q}{28}\right\}$
D) $\left\{5, \frac{59}{28}\right\}$
E) $\left\{-\frac{59}{28}\right\}$
F) $\{59 / 28\}$
$G)$ None of $A(B),(), D), E)$, and F).
(7-121 M, B)
328 Suppose you wanted to find all real solutions to $\sqrt{x}=-3$. Square both sides to get $x=9$.
Is the solution set for " $\sqrt{x}=-3$ " $\{9\}$?
y) Yes
N) No_{0}
($7-121 B$)
(329) As taught, extraneous solutions can come from any one of which 2 ways:
H) Multiplying by an expression involving a variable that coned be 0 and cubing both sides.
J) Multiplying both sides of an equation by a negative number and cubing both sides.
k) Multiplying by an expression involving a variable that could be 0 and squaring both sides
L) Multiplying both sides of an expression by a negative number and squaring both sides.
$M)$ None of $(H), J), K$, and (L).
($7-122 T, M$)
(330) Beginning steps for finding all real solutions were

$$
\begin{aligned}
& x+\sqrt{x+3}=9 \\
& \sqrt{x+3}=9-x
\end{aligned}
$$

A correct next step 15 :
N) $x+3=|9-x|$
$\theta) x+3= \pm(9-x)$
P) $|x+3|=9-x$
R) $x+3=81-x^{2}$
5) $x+3=81+x^{2}$
T) $x+3=81-18 x+x^{2}$
U) None of $N(\theta), P), R), S)$, and T)
(7-122)
124
(331) Solving $x+\sqrt{x+3}=9$ to find all real solutions, $\sqrt{x+3}$ was isolated, both sides of the equation were squared, the equation $0=x^{2}-19 x+78$ was derived and solved to give $x=6$ or $x=13$. The solution set is
A) $\{6\}$
B) $\{13\}$
C) $\{6,13\}$
D) $\}$
E) None of $A(B), C)$, and $D)$.
$(7-123 \tau)$
(332) Beginning steps for finding all real solutions were

$$
\begin{aligned}
& \sqrt{8+x}+\sqrt{1+x}-\sqrt{41-x}=0 \\
& \sqrt{8+x}+\sqrt{1+x}=\sqrt{41-x} \\
& (\sqrt{8+x}+\sqrt{1+x})^{2}=(\sqrt{41-x})^{2}
\end{aligned}
$$

A correct next step is
F) $8+x+1+x=41-x$
G) $|8+x|+|1+x|=|41-x|$
H) $8+x+2 \sqrt{8+x} \sqrt{1+x}+1+x=41-x$
J) None of $F), G$, and H).
$(7-123,124)$
125
(333) The solution set for $\sqrt{8+x}+\sqrt{1+x}-\sqrt{41+x}=0$ is
k) $\left\{8, \frac{3}{124}\right\}$
L) $\left\{8,-\frac{124}{3}\right\}$
M) $\{8\}$
O) $\{\xi$
P) $\left\{-8, \frac{124}{3}\right\}$
R) $\left\{-8,-\frac{124}{3}\right\}$
S) $\{-8\}$
T) None of $(k),(), M), \theta), P), R)$, and S).
(7-123m, B)
(334) Suppose you have
$2 \sqrt{8+x} \sqrt{1+x}=32-x$, what is a line that can be derived from squaring both sides?
A) $4\left(8+x^{2}\right)=1024-x^{2}$
B) $4\left(8+x^{2}\right)=1024+x^{2}$
C) $4\left(8+9 x+x^{2}\right)=1024-x^{2}$
D) $4\left(8+9 x+x^{2}\right)=1024+x^{2}$
E) $4\left(8+9 x+x^{2}\right)=1024-64 x-x^{2}$
F) $4\left(8+9 x+x^{2}\right)=1024-64 x+x^{2}$
G) $4\left(8+9 x+x^{2}\right)=1024-32 x+x^{2}$
H) None of $(A), B),(), D), E), F)$, and G)
$(7-123,124)$
126
(335) Solving $\sqrt{8+x}+\sqrt{1+x}-\sqrt{41+x}=0$ to fin all real solutions, radicals were isolated, both sides of equations were squared twice the equation $3 x^{2}+100 x-992=0$ was derived to give $x=8$ or $x=-\frac{124}{3}$. The solution set for the original equation is
J) $\left\{8,-\frac{124}{3}\right\}$
k) $\left\{-\frac{124}{3}\right\}$
L) $\{8\}$
m) $\}$
$\theta)$ None of (J), K) L), and M).
(7-124)
(336) The original equation to be solved 15 $\sqrt{8+x}+\sqrt{1+x}-\sqrt{41+x}=0$. After isolating a radical and squaring both sides, it was initially derived that $x=8$ or $x=\frac{-124}{3}$. In the process to check $x=8$, 8 was subtituted in for x in the left side of the original equation. What value does the left side evaluate to in that case?
P) 14
Q) $16+9-49$
R) the left side is undefined for $x=8$.
S) None of P), Q), and R).
(337) The original equation to be solved is $\sqrt{8+x}+\sqrt{1+x}-\sqrt{41+x}=0$. In the process to derive solutions), both sides of equations were squared a couple of times, so answers need to be checked. One answer that was derived was $x=8$. Then when 8 is substituted for x in the left side of the original equation, the left side evaluated to 0 . The value of the right side is 0 . So this means
T) 8 is in the solution set.
4) 0 is in the solution set
w) 8 is an extraneous solution
$x) O$ is an extraneous solution
z) None of $(\tau),(\omega), \omega$), and X).
(7-126)
338
$x^{4}-x^{2}-12=0$ is an equation in quadratic
form. This can be seen by form. This can be seen by substituting $w=x^{2}$
into the original equation into the original equation. What is the solution set for the original equation? Real and
A) $\{4,-3\}$ complex solutions are allowed.
B) $\{ \pm 4, \pm 3\}$
C) $\{-4,+3\}$
D) $\{ \pm 2, \pm \sqrt{3}\}$
E) $\{ \pm 2, \pm i \sqrt{3}\}$
F) None of $A, B), C), D)$, and E.
$(7-126 T)$
128
339 To find all real and complex solutions for $x^{4}-x^{2}-12=0$ it can be recognized as an equation in quadratic form. A substitution of $\omega=$ \qquad in the equation will change it to a quadratic. Fill in the blank with
G. \sqrt{x}
H. x^{2}
J. x^{4}
K. None of (6), H), and J).
(7-126m)
(340) What is the solution set for $x^{2}=-3$ (Real and complex solutions).
L) $\{3 i,-3 i\}$
m) $\{-\sqrt{3}, \sqrt{3}\}$

ө) $\{3 \sqrt{i},-3 \sqrt{i}\}$
P) $\{i \sqrt{3},-i \sqrt{3}\}$
R) None of L), M),θ), and P).
(7-126B)
(341) $\left(x^{3}-5\right)^{2}+3\left(x^{3}-5\right)-18=0$ is an equation
in quadratic form. A substitution of $\omega=$ will change it to a quadratic.
FIll in the blank with
5) $x^{3}-5$
T) $\sqrt{x^{3}-5}$
v) $\left(x^{3}-5\right)^{2}$
$\omega)$ None of S), T), and U).
(7-126B, 7-127T) 129
342 Find all real solutions: The solution set for $\left(x^{3}-5\right)^{2}+3\left(x^{3}-5\right)-18=0$ is
A) $\{3,-6\}$
B) $\{-3,6\}$
C) $\{-1,8\}$
D) $\{-1,2\}$
E) None of A) , B) , C), and D).
($7-127 \mathrm{M}$)
(343) $x^{\frac{4}{3}}-7 x^{2 / 3}-8=0$ is an equation in quadratic form. A substitution of $\omega=$ \qquad will change it to a quadratic. Fill in the blank with
F) $\sqrt{x^{2 / 3}}$
G) $x^{1 / 3}$
H) $x^{4 / 3}$
I) None of F), G), and H).
(7-127M)
(344) Find all real and complex solutions for

$$
x^{4 / 3}-7 x^{2 / 3}-8=0
$$

k) $\{8,-1\}$
L) $\{8 i,-i\}$
M) $\{16 \sqrt{2}, i\}$
P) $\{-16 \sqrt{2}, 16 \sqrt{2}, i,-i\}$
Q) $\{-i \sqrt{2}, i \sqrt{2}, i,-i\}$
R) $\{-8 i, 8 i,-1,1\}$
5) None of $(K), L), M), P), Q)$, an (R).
(7-127B)
130
(345) Find all real and complex solutions:

The solution set for $x^{\frac{2}{3}}=-1 \mathrm{is}$.
T) $\{-1,1\}$
u) $\{-\sqrt{i}, \sqrt{i}\}$
w) $\{-\sqrt[3]{i}, \sqrt[3]{i}\}$
x) $\{-i, i\}$
z) None of $(T),(1, \omega)$, and $X)$.
(7-127B)
(346) Find all real and complex solutions: $x^{2 / 3}=8$
A) $\{4\}$
B) $\{-2,2\}$
C) $\{-16 \sqrt{2}, 16 \sqrt{2}\}$
D) $\{-\sqrt{2}, \sqrt{2}\}$
E) None of A) , B) , C), and D).
(7-128T)
(347) Find all real solutions: $x^{\frac{3}{2}}=8$.

The solution set is
F). $\{4\}$
G) $\{-16 \sqrt{2}, 16 \sqrt{2}\}$
t) $\{-2,2\}$

よ) $\{-4,4\}$
k) $\{2\}$
L) None of $F(, G), H), J)$, and $K)$.
($7-128 \mathrm{~m}$)
131
(348) To begin solving $x^{3 / 2}=8$ you
M) cube both sides and get $x^{1 / 2}=2$.
$\theta)$ take the cube root of both sides and get $x^{1 / 2}=8^{3}$
P) square both sides and get $x^{3}=\sqrt{8}$.
R) Square both sides and get $x^{3}=64$.
S) None of M) , θ) , P), and R).
$(7-128 \mathrm{M})$
(349) To begin solving $\left(x^{2}+12\right)^{\frac{3}{4}}=x^{3}$ you
A) Take the fourth root of both sides and get $\left(x^{2}+12\right)^{3}=x^{3 / 4}$.
B) Raise both sides to the fourth power and get $\left(x^{2}+12\right)^{3}=x^{3 / 4}$.
c) Take the cube root of both sides and get $\left(x^{2}+12\right)^{1 / 4}=x^{3 / 4}$.
D) Raise both sides to the fourth power and $\operatorname{get}\left(x^{2}+12\right)^{3}=x^{12}$
E) None of A) , B) , C), and D).
($7-128 \mathrm{~m}$)
(350) A line that follows from $\left(x^{2}+12\right)^{3}=x^{12}$ is
F) $0=x^{4}-x^{2}-12$
G) $0=x^{12}-x^{2}-12$
H) $0=x^{12}-x^{6}-12^{3}$
J) $0=x^{4}+x^{2}+12$
K) None of $F(, G), H$), and J).
(7-128 M, B)
132
(351) By letting $\omega=x^{2}$ and substituting in the equation $0=x^{4}-x^{2}-12$ can be derived that
L) $\omega=6$ or $\omega=-2$
M) $\omega=-6$ or $\omega=2$

Ө) $\omega=-4$ or $\omega=3$
P) $\omega=4$ or $\omega=-3$
R) None of L) M) 0 , and P)

$$
(7-128 M, B ; 7-129)
$$

(352) Find all real and complex solutions for

$$
\left(x^{2}+12\right)^{\frac{3}{4}}=x^{3}
$$

s) $\{-2,2,-i \sqrt{3}, i \sqrt{3}\}$
T) $\{-2,2\}$
u) $\{2\}$
w) $\{-i \sqrt{3}, i \sqrt{3}\}$
x) $\{i \sqrt{3}\}$
z) None of $(5), T),(v)(\omega)$, an (x).
(8-131B)
(353) Find x.

$$
x=
$$

A) 5
B) 7
C) $\sqrt{7}$
D) 25
E) None of A) , B) , C), and D).
(354) According to the Pathagorean Theorem

F) $a+b=c$
G) $a^{2}+b^{2}=c^{2}$
H) $\sqrt{a}+\sqrt{b}=\sqrt{c}$
J) $b^{2}+c^{2}=a^{2}$
K) None of F), G), H), and F).
(8-132)
(355) Find x :
L) $x=\frac{5 \sqrt{2}}{2}$

M) $x=5 \sqrt{2}$
()) $x=\frac{25}{2}$
p) None of L), M), and θ).
(8-132 M)
(356) If you travel 150 miles in $2 \frac{1}{2}$ hours, what is your rate in miles per hour?
Q) 375
R) 45
S) 60
T) 75
U) None of $Q(R), S$, and T).
(8-133T)
134
(357) Seven steps were given for solving a word problem. What is the left out step in the list below?

1. Read the problem to understand it.
2. Draw a picture
3. Name your variables
4.
5. Solve the equation.
6. Check your answer.
7. Answer the question
A) Square both sides
B) Rephrase the problem to clearer English.
C). Evaluate your answer.
D) Get an equation
E) None of $A, B), C)$, and D).
(8-134)
(358) A rectangular door has its height 3 feet more than its width. The diagonal length of the door is 7 feet. What is the equation for this when x is the width?
F) $x^{2}+(x-3)^{2}=7^{2}$
G) $x^{2}+7^{2}=(x-3)^{2}$
H) $(x+3)^{2}+7^{2}=x^{2}$
J) $x^{2}+7^{2}=(x+3)^{2}$
k) $x^{2}+(x+3)^{2}=7^{2}$
L) None of $F(, 6), H), J)$, and k).

359 A rectangular door has its height 3 feet more than its width. The diagonal length of the door is 7 feet. What is the area of the door? (SQ. FEET)
m) $\frac{-3+\sqrt{89}}{2}$
e) $\frac{-3-\sqrt{89}}{2}$
P) Both $\frac{-3+\sqrt{89}}{2}$ and $\frac{-3-\sqrt{89}}{2}$ are acceptable answers
R) 20
S) $\frac{98}{4}$
T) None of $M(\theta), P), R)$, and S.
(8-134,135)
(360) A rectangular door has its height 3 feet more than its width. The diagonal length of the door is 7. feet. The area of the door in square feet is to be found. Let x be the width of the door. Solving the proper equation, x is found and checked to be $\frac{-3+\sqrt{89}}{2}$. What number is x multiplied by to give $\frac{2}{2}$ the area.?
v) $\frac{-3+\sqrt{89}}{2}-3$
w) $\frac{3+\sqrt{86}}{2}$
x) $\frac{3+\sqrt{89}}{2}$
z) None of $(U), \omega$), and X).
(8-134, 135)
(361) A rectangular door has its height 3 feet more than its width. The diagonal length of the door is 7 feet. Let x be the width of the dor. When the value of x is found that value for x can be checked to see if it is correct by seeing if
A) $x^{2}+(x-3)^{2}=\frac{-3+\sqrt{89}}{2}$
B) $x^{2}+(x+3)^{2}=\frac{3+\sqrt{82}}{2}$
c) $x+(x+3)=7$
D) $x^{2}+(x+3)^{2}=7^{2}$
E) $x-(x+3)=7$
$F)$ None of $A(B), C), D)$, and E).
(8-136)
(362) A lover of square roots wants to cut a 12 foot board into 3 pieces, 2 shorter pieces of equal length and 1 longer piece. The longer piece is to be $\sqrt{2}$ feet longer than a shorter piece. Find the lengths of the pieces. Let x be the shorter piece length. What equation is to be solved?
G. $(x-\sqrt{2})+(x-\sqrt{2})+x=12$
H. $x+x+(x+\sqrt{2})=12$
J. $x+x+(x-\sqrt{2})=12$
K. None of $G 1, H)$, and J).
(8-137)
(363) The area of a rectangle has a numerical value that is 3 more than the perimeter. The height is twice the width. What is the height of the rectangle? Let x be the width of the rectangle. What is the equation to be solved?
L) $2 x^{2}=6 x+3$
m) $x+2 x=x+2 x+x+2 x+3$

日) $x(2 x)=x+2 x+x+2 x-3$
P) $x\left(\frac{1}{2} x\right)=x+2 x+x+2 x+3$
Q) None of L), $M), \theta$), and P).
$(8-137,138)$
(364) The area of a rectangle has a numerical value that is 3 more than the perimeter. The height is twice the width. What is the height of the rectangle? Let x be the width of the rectangle. In solving this problem it is found that $x=\frac{3+\sqrt{15}}{2}$. In checking the answer the area for the rectangle was found. What is the area?
R) Area $=\left(\frac{3+\sqrt{15}}{2}\right)\left(\frac{3-\sqrt{15}}{2}\right)$
S) Area $=12-3 \sqrt{15}$
T) Area $=12+3 \sqrt{15}$
v) Area $=\frac{3+\sqrt{15}}{2}+2\left(\frac{3+\sqrt{15}}{2}\right)$
w) Area $=(3+\sqrt{15}) 2(3+\sqrt{15})$
x) None of $R(, S), T), U)$, and (w).
(8-139)
138
(365) Mixture problem: Sam has 200 gallons of liquid A that is 10% sugar. How many gallons of liquid B, which is 40% sugar, should Sam mix with liquid A to make a solution that is 20% sugar? Let x be the number of gallons of 40% solution to be mixed. The equation to be solved is:
A) $x(.10)+x(.40)=(200)(.10)$
B) $200(.10)+x(.10)=(200+x)(.40)$
C) $200(.10)+x(.10)=(200)(.40)$
D) $200(.10)+x(.40)=(200+x)(.20)$
E) None of A) , B) , C), and D).
$(8-139,140 T)$
(366) Mixture problem: Sam has 200 gallons of liquid A that is 10% sugar. How many gallons of liquid B, which is 40% sugar, should Sam mix with liquid A to make a solution that is 20% sugar? Let x be the number of gallons of 40% solution to be mixed. In the process of solving the problem the amount of sugar in the final solution is calculated an θ found to be
F) $(200+x)(.20)$
G) $(200)(.20)$
H) $(200+x)\left(\frac{.10+.40}{2}\right)$
J) $(200)(x)(.20)$
k) None of $F), G), H$), and J).
(8-143T)
(367) Sam takes 5 hours to do a job. For each hour how much of the job gets done
per hour? per hour?
L) $\frac{50 \mathrm{ZOB}}{\mathrm{HOLR}}$
m) $\frac{1}{5} \frac{\text { Job }}{\text { Hour }}$
Q) $\frac{1}{5^{2}}$ JOB $/ 10 \mathrm{uR}$
P) NONE OF L), M), AND θ).
$8-143 \mathrm{M}$
(368) Sue takes 7 hours to do a job. For each hour how much of the job gets done per hour?
Q) $\frac{1}{7}$ JOB/ HOUR
R) $7 \mathrm{JOB} / \mathrm{HOUR}$
S) $\frac{1}{7^{2}}$ JOB/ HOUR
T) None of Q), R), and S).
(8-143B,144T)
(369) Sam takes 5 hours to mow a yard. What fraction of the job does sam get done in 3 hours?
v) $\frac{5}{3}$
w) $\frac{1}{3 \cdot 5}$
x) $\frac{3}{5}$
z) None of (u, w) and x).
$(8-143,144)$
370 Sam takes 5 hours to mow a yard. Sam works x hours. What fraction of the job does Sam get done?
A) $5 x$
B) $x\left(\frac{1}{5}\right)$
C) $1 \frac{1}{5} x$
D) None of A) , B), and C)
$(8-143,144,145)$
(371) Sam takes 5 hours to mow a yard. Sue takes 7 hours to mow the yard. Let x be the time it takes to get the job done with Sam and Sue working together. What is the equation to be solved?
E) $5 x+7 x=1$
F) $\frac{5}{x}+\frac{7}{x}=1$
G) $\frac{x}{5}+\frac{x}{7}=1$
H) $\frac{x}{5}+\frac{x}{7}=12$
J) None of E),$F), G$), and H).
(8-145B)
(372) Find the value for x when $\frac{x}{5}+\frac{x}{7}=1$.
k) $x=\frac{35}{12}$
L) $x=\frac{12}{35}$
m) $x=\frac{1}{12}$
P) $x=6$
Q) None of $K(L), M)$, an (P).
(373) Sam runs at a rate of 4 miles per hour.

Sam runs for 90 minutes and in addition to that runs for T hours. What is the total distance Sam runs?
R) $4(90+T)$
S) $\frac{4}{90+T}$
T) $4\left(\frac{3}{2}+T\right)$
i) $\frac{4}{3 / 2+T}$
$\omega)$ None of R), S),T), and U).
(8-146 T)
(374) Which is the true formula?
A) Distance $=\frac{\text { Rate }}{\text { Time }}$
B) Rate $=\left(D_{\text {stance }}\right)($ Time $)$
C) Time $=($ Distance $)($ Rate $)$
D) Distance $=($ Rate $)($ Time $)$
E) None of A), B), C), and D).
$(8-146 \mathrm{~m}, \mathrm{~B})$
(375) Bob runs at a rate of 7 miles per hour.

Bob runs for T hours. What is the distance Bob runs?
F) $7 T$
G) $\frac{7}{T}$
H) $\frac{\pi}{7}$
J) None of F), 6), and H).
(376) Sam can run at a rate of 4 miles per hour. Bob can run at a rate of 7 miles per hour. Sam starts running away in a straight line 90 minutes before Bob starts. How long will it take Bob to catch Sam? Let T be the time Bob runs until he catches Sam. What is the equation to be solved?
k) $7(90+T)=4 T$
L) $4(90+T)=7 T$
M) $7\left(\frac{3}{2}+T\right)=4 T$

Ө) $4\left(\frac{3}{2}+T\right)=7 T$
p) None of $(K), L), M)$, and θ).
$(8-147)$
377 Which is the correct formula?
Q) Interest $=\frac{\text { Principal }}{(\text { Rate })(\text { Time })}$
R) $P_{\text {nincipal }}=($ Interest $)($ Rate $)$ (Time)
S) Rate $=($ Principle $)($ Interest $)($ Time $)$
T) Time $=($ Principle $)($ Rate $)($ Interest $)$
U) Interest $=($ Principle $)($ Rate $)($ Time $)$
w) None of $Q(R), S), T)$, and U).
(378) Let P be the original principal deposited in a savings account that yields 4% compounded annually. How much is in the account after one year?
A) $P+(.04) 1$
B) P
C) $P(.04) 1$
D) $P+P(.04) 1$
E) None of A) , B) , C), and D).
$(8-147,148)$
(379) Let p be the original principal deposited in a savings account that yields 4% compounded annually. How much is in the account after two years?
F) $(P+P(.04) 1)+(P+P(.04) 1)$
G) $(P+P(.04) 1)+(.04)$
H) $\left(P+P(.04) \frac{1}{7}\right)+(P+P(.04) 1)(.04)$
J) $(P+P(.04) 1)(.04)$
K) None of F), G), H), and J).
(8-148)
(380) Solve $(P+P(.04) 1)+(P+P(.04) 1)(.04)=2000$
L) $P=\frac{2000}{1+.04}$
m) $P=\frac{2000}{(1.04)^{2}}$
Q) $P=2000(1.04)$
R) $P=2000(1.04)^{2}$
5) None of L), M), θ), and R).
$(8-148 \mathrm{M})$
381) True or False $(P+P(.04) 1)+(P+P(.04) 1)(.04)=$

$$
(P+P(.04))(1+.04)
$$

T) True
F) False

$$
(8-147,148)
$$

(382) How much money will Sam have to deposit in an account now so that 2 years from now Sam will have $\$ 2000$ (the account yields 4% compounded annually).
T) $\frac{2000}{2(1.04)}$ dollars
U) $\frac{2000}{(1.04)}$ dollars
w) $2000-(1.04)^{2}$
x) $(2000)(1.04)^{2}$
z) None of $T 1,(0),(\omega)$, and X).
$(9-151 T)$
(383) Which is the definition for the open interval from a to b ?
A) $(a, b)=\{x \mid a<x<b\}$
B) $(a, b)=\{x \mid a \leq x \leq b\}$
C) $(a, b)=\{x \mid a>x>b\}$
D) None of A), B), and C)
(9-151T)
(384) True or False: $3 \notin(-2,3)$
T) True
F) False
$(9-1517)$
(385) True or False: $\frac{1}{2} \varepsilon(-2,3)$
T) True

干) False
(9-15 (M)
(386) Which is a picture of $(-2,3)$?
E)

F)

G)

H) None of E), F), and G).
(9-151B) $\quad 146$
(387) $a<x<b$ means
J) $a<x$ OR $x<b$
K) if $a<x$, then $x<b$
L) $a<x$ AND $x<b$
m) None of J), k), and L).
(9-151B)
(388) The definition of (a, ∞) is
N) $\{x \mid x>a\}$
$\theta)\{x \mid x<a\}$
P) $\{x \mid x<\infty\}$
R) $\{x \mid x \leq a\}$
S) None of $N(, \theta), p$), and R)
(9-152T)
(389) True or False: $-\frac{1}{2} \varepsilon(-1, \infty)$
T) True
F) False
$(9-152 T)$
(390) True or False: $-2 \varepsilon(-1, \infty)$
T) True
F) False
(9-152T)
(3q1) True or False: $-1 \notin(-1, \infty)$
T) True
F) False
(9-152T)
147
(392) which is a picture of $(-1, \infty)$?
T)

u)

w)

$x)$ None of $T), U$), and ω).
(9-152 m)
(393) The definition of $(-\infty, a)$ is
A) $\{x \mid x>a\}$
B) $\{x \mid a<x\}$
C) $\{x \mid x \leq a\}$
D) None of A), B), and C)
(9-152B)
(394) True or false: $-4 \varepsilon(-\infty,-3)$
T) True
F) False
(9-152B)
(395) True or false: $-3 \varepsilon(-\infty,-3)$
T) True
F) False
(9-152B)
148
(396) which is a picture of $(-\infty,-3)$?
E)

ғ)

G)

$+1)$ None of $E), F$), and G.
(9-1537)
(397) The open interval $(-\infty, \infty)$ is another way of denoting the set of
よ) Integers
k) Positive integers
L) Real Numbers
M) Rational Numbers
P) None of (J), K), L), and M).
(9-153 M)
(398) The definition of $[a, b]$ is
Q) $\{x \mid x>a$ OR $x<b\}$
R) $\{x \mid a<x$ OR $x<b\}$
5) $\{x \mid a<x<b\}$
T) $\{x \mid a \leq x \leq b\}$
U) $\{x \mid a \leq x$ OR $x \leq b\}$
w) None of Q), R), S), T), and U).
$(9-153 T) \quad 149$
(399) True or False: $-2 \varepsilon[-2,3]$
T) True
E) Ealse
(9-153T)
(400) True or False: $-\frac{1}{2} \varepsilon[-2,3]$
T) True
F) False
(9-153 M)
(401) which is a picture of $[-2,3]$?
A)

B)

C)

D) None of A), B), and C).
(9-153B)
(402) The definition of $[a, \infty)$ is
E) $\{x \mid x>a\}$

干) $\{x \mid x \geq a\}$
G) $\{x \mid a<x\}$
H) $\{x \mid \quad a \geq x\}$
J) None of E), F), G), and H).
$(9-154 T)$
(403) True or False: $-\frac{3}{2} \varepsilon[-1, \infty)$
T) True

干) False
(9-154T)
(404) True or False $-1 \varepsilon[-1, \infty)$
T) True
F) False
(9-154T)
(405) Which is a picture of $[-1, \infty$)
k)

L)

M)

p) None of K) L), and M.
(9-154B)
(406) The definition of $(-\infty, a]$ is
Q) $\{x \mid x<a\}$.
R) $\{x \mid a \leq x\}$
S) $\{x \mid x \leq a\}$
$T)$ None of $Q), R$, and S).
(9-154B) 151
(407) True or False: $-4 \varepsilon(-\infty,-3]$
T) True
F) False
(9-154B)
(408) True or False: $-2 \varepsilon(-\infty,-3]$
T) True
F) False
(9-154B)
409 Which is a picture of $(-\infty,-3]$?
U)

$\omega)$

x)

$z)$ None of $(U),(1)$, and X).
(9-155T)
(410) How is $[a, b)$ read?
A) The half open interval from a to b.
B) The half open interval from a to b, open at a.
C) The half open interval from a to b, closed at a.
D) None of A) , B), and ().
($9-155 \mathrm{M}$)
152
(411 How is $[-1,3$) defined?
E) $\{x \mid-1 \geq x>3\}$
E) $\{x \mid-1 \leq x<3\}$
G) $\{x \mid-1 \geq x$ OR $x>3\}$
H) $\{x \mid-1 \leq x$ OR $x<3\}$
J) None of $E), F), G)$, and H).
$(9-155 \mathrm{M})$
(412) True or False: $-1 \notin[-1,3)$
T) True
F) False
(9-155 M)
(413) True or False: $3 \varepsilon[-1,3)$
T) True
F) False
(9-155 B)
(414) which is a picture of $[-1,3)$?
K)

L)

M)

θ) None of K), L), and M).
$(9-155 A, T)$
(415) How is (a, b] real?
P) The half open interval from a to b, closed at b.
Q) The half open interval from a to b '.
R) The half open interval from a to b, open at b.
S) None of P),Q) , R), and S).
($9-155 \mathrm{~A}, \mathrm{M}$)
(416) How is $(-1,3]$ defined?
T) $\{x \mid-1<x<3\}$
U) $\{x \mid-1>x \geq 3\}$
w) $\{x \mid-1 \leq x \leq 3\}$
x) $\{x \mid-1 \geq x>3\}$
z) None of T), (), ω), and X).
($9-155 \mathrm{~A}, \mathrm{~m}$)
(417) True or False: $-2 \varepsilon(-1,3]$
T) True
F) False
$(9-155 A, M)$
(418) True or False: $-1 \notin(-1,3]$
T) True
F) False
$(9-155 A, m) \quad 154$
(419) True or False: $4.23 \&(-1,3]$
T) True
F) False
(9-155A, m)
(420) True or False: $\frac{1}{2} \varepsilon(-1,3]$
T) True
F) False
(9-155A, B)
(421) Which is a picture of $(-1,3]$?
A)

B)

c)

D)

E)

F) None of (A), B), C), D), and E).
$(9-156 T)$
155
(422) Given $A<B$. Which of the following is true?
G) $A+C>B+C$ when C is negative because you turn the inequality around.
H) For any real number $C, A+C<B+C$
J) None of G) and H).
$(9-156 T)$
(423) Given $A<B$. Which of the following is true?
k) For any real number $C, A-C<B-C$.
L) $A-C>B-C$, when C is positive, making - C negative, hence turn the inequality around.
m) None of
k) and 4).
(9-156M)
424 Given $A<B$ and $C>0$. Which of the following is true?
N) $A C<B C$
O) $A C>B C$ because you need to turn the inequality around.
$P)$ None of N) and θ).
$(9-156 \mathrm{M}) \quad 156$
(425) Given $A<B$ and $C<0$. Which of the following is true?
Q) $A C<B C$
R) $A C>B C$ because you need to turn the inequality around.
S) None of Q) and R).
(9-156B)
(426) Solve (= name the solution set) $3 x>6$
T) $(-\infty, 2)$
U) $(2, \infty)$
w) $\{x \mid x<2\}$
$x)$ None of T), U), and ω).
$(9-1577)$
(427) Solve (= name the solution set) $-4 x>12$
A) $(-\infty,-3)$
B) $(-3, \infty)$
C) $(3, \infty)$
D) $\{x \mid x>3\}$
E) None of $A), B), C$, and D).
(9-157B)
157
(428) In the solving process for $\frac{1}{6} x-2 \geq \frac{1}{2} x+4$, 2 is added to both sides and $\frac{1}{2} x$ is subtracted from both sides. After simplifying, the result is
F) $-\frac{1}{3} x \geq 2$
G) $\frac{2}{3} x \geq 6$
H) $-\frac{1}{3} x \geq 6$
J) $\frac{1}{3} x \geq 6$
k) None of $F(, G), H$), and J).
($9-157 B$)
(429) The solution set for $\frac{1}{6} x-2 \geq \frac{1}{2} x+4$ is
L) $[-2, \infty)$
M) $[-18, \infty)$

ө) $(-\infty,-2]$
p) $(-\infty,-18]$
R) None of L), M), 0), and P)
$(9-158 \mathrm{~T}) \quad 158$
(430) $-3<2-\frac{3}{4} x<5$ means which of the following:
s) $-3<2-\frac{3}{4} x \quad$ OR $\quad 2-\frac{3}{4} x<5$
T) $-3<\left(2-\frac{3}{4}\right) x<5$
u) $-3<2-\frac{3}{4} x$ AND $2-\frac{3}{4} x<5$
$w)$ None of S), T), and U).
(9-158m)
(431) Multiplying both sides of $-5<-\frac{3}{4} x$ by $-\frac{4}{3}$ and simplifying some yields
A) $\frac{20}{3}>x$
B) $\frac{20}{3}<x$
C) $-\frac{19}{3}>x$
D) $-\frac{19}{3}<x$
E) None of (A), B), C), and D).
$(9-158 \mathrm{~m})$
(432) The solution set for $-4<x<\frac{20}{3}$ is
F) $(-4, \infty) \cup\left(-\infty, \frac{20}{3}\right)$
G) $\left(-4, \frac{20}{3}\right)$
H) $(-\infty,-4) \cup\left(\frac{2 D}{3},+\infty\right)$
J) None of F), G), and H).
(9-158B)
433 Subtracting 2 all the way across $-3<2-\frac{3}{4} x<5$ yields
k) $-5<-\frac{3}{4} x<5$
L) $-5<4-\frac{3}{4} x<3$
M) $-5<-\frac{3}{4} x<3$
P) None of $K), L)$, and M).
(9-158B)
(434) Given $-3<2-\frac{3}{4} x<5$. If you subtract 2 all the way across and the multiply by $\frac{-4}{3}$ all the way across you get
Q) $\frac{20}{3}>x>-4$
R) $\frac{20}{3}<x<-4$
S) $\frac{20}{3}>x>\frac{-20}{3}$
T) None of Q), R), and S).
$(9-159 T)$
435) The solution set for $3+2 x>9$ OR $3+2 x<-9 \quad$ is
U) $(-6,3)$
w) $(-6, \infty) \cup(-\infty, 3)$
x) $(-\infty,-6) \cup(.3, \infty)$
z) None of $(\cup), \omega$), and X).
$(9-159 B)$
160
436 True or False: $x>3$ OR $x<-6$ can be written $3<x<-6$.
T) True
F) False
(9-159T)
(437) Suppose you have $x>3$ OR $x<-6$. which is the exactly correct terminology for the solution set?
A) $(-\infty,-6)$ OR $(3, \infty)$
B) $(-\infty,-6)$ AND $(3, \infty)$
C) $(-\infty,-6) \cup(3, \infty)$
D) $(-6,3)$
E) None of $A), B), C)$, and D).
$(9-161 T)$
(438) $(-5,2) \cap(-1,4]=$
F) $(-5,4]$
G) ϕ
H) $(-1,2)$
J) $(-1,2]$
k) None of $F(, G), H)$, and J).
$(9-161 M) \quad 161$
$439(-5,2) \cup(-1,4]=$
L) $(2,-1)$
M) $(-5,4]$
Q) $(-5,4)$
p) $(-1,2)$
R) None of $L), M), \theta)$, and P).
$(9-161 \beta)$
$440(3,5] \cap[5,7)=$
s) $(3,7)$
T) 5
u) $\{5\}$
w) ϕ
$x)$ None of $s), T,, u), \omega$, and x).
$(9-161 B)$
(441) $(3,5] \cup[5,7)=$
A) $(3,7)$
B) $[3,7]$
C) ϕ
D) 5
E) $\{5\}$
F) None of $A), B, C), D)$, and E).
$(9-162 T)$
162
(442) The proper removing of absolute values for $|x|<k$ is
G) $x<K$ OR $x>-K$
H) $x<-k$ OR $x>k$
J) $-k<x<k$
L) $x<k$
M) None of (G), H), J), and L).
$(q-162 T)$
(443) $|x|<3$ if and only if
N) $x<3$

Ө) $-3<x<3$
P) $x<3$ oR $x>-3$
R) $x<-3$ OR $x>3$
S) None of $(N), \theta), P)$, and R).
(9-162B)
444 The solution set for $|2-3 x|<7$ is
T) $\left(-3, \frac{5}{3}\right)$
v) $\left(-\infty,-\frac{5}{3}\right) \cup(3, \infty)$
w) $\left(-\frac{5}{3}, 3\right)$
x) $\left(-\frac{5}{3}, \infty\right)$
$z)$ None of T), $($), (ω), and X).
$(9-162 M)$
(445) $|2-3 x|<7$ if and only if
A) $2-3 x<7$
B) $2-3 x<7$ OR $2-3 x>-7$
C) $7<2-3 x<-7$
D) $-7<2-3 x<7$
E) None of A) , B), (), and D).
(q-162M)
(446) Given $-7<2-3 x<7$. Subtract 2 all the way across. Divide by -3 all the way across and you get
F) $\frac{-9}{-3}>x>\frac{5}{-3}$
G) $\frac{-9}{-3}<x<\frac{5}{-3}$
H) $-\underline{q}_{3}>x>\frac{7}{-3}$
J) None of F), G), and H
(9-163)
447) The solution set for $\left|\frac{3}{4}-\frac{2}{3} x\right| \leq \frac{1}{5}$ 15
k) $\left(-\infty, \frac{33}{40}\right] \cup\left[\frac{57}{40}, \infty\right)$
L) $\left[\frac{33}{40}, \frac{57}{40}\right]$.
M) $\left(-\infty, \frac{57}{4}\right]$
P) $\left[\frac{57}{40}, \frac{33}{40}\right]$
Q) None of k), L), M), and p).
$(9-163 T)$
(448) $\left|\frac{3}{4}-\frac{2}{3} x\right| \leq \frac{1}{5}$ if and only if
R) $\frac{3}{4}-\frac{2}{3} x \leq \frac{1}{5}$
S) $\frac{3}{4}-\frac{2}{3} x \leq \frac{1}{5}$ OR $\frac{3}{4}-\frac{2}{3} x \geq-\frac{1}{5}$
T) $-\frac{1}{5} \leq \frac{3}{4}-\frac{2}{3} x \leq \frac{1}{5}$
v) $\frac{1}{5} \leq \frac{3}{4}-\frac{2}{3} x \leq-\frac{1}{5}$
w) None of R), S), T), and U).
$(9-163 \mathrm{M})$
449) Given $-\frac{1}{5} \leq \frac{3}{4}-\frac{2}{3} x \leq \frac{1}{5}$. Subtract $\frac{3}{4}$ all the way across. Multiply by $-\frac{3}{2}$ all the way across and you get
A) $\frac{-57}{40} \geq x \geq \frac{33}{40}$
B) $\frac{-57}{40} \geq x \geq-\frac{33}{40}$
c) $\frac{57}{40} \geq x \geq \frac{33}{40}$
D) $\frac{-57}{40} \leq x \leq \frac{-33}{40}$
E) $\frac{57}{40} \leq x \leq \frac{33}{40}$
F) None of $A, B), C), D)$, an θ. .
(9-163B)
(450) what is the picture of the solution set for $\frac{33}{40} \leq x \leq \frac{57}{40}$?
G)
H)

Ј)

L) None of 6$), H 1, J)$, and K).
$(9-164 T)$
(451) $|x|>k$ if and only if
m) $x>k$ OR $x<-k$
θ) $x>k$
p) $\quad-k>x>k$
R) $x<K$ OR $x>-k$
S) None of $(M), \theta), P$), and R).
$(9-164 T)$
(452) $|x|>3$ if and only if
T) $x>3$
U) $x<3$ oR $x>-3$
w) $-3>x>3$
$x)$ None of T), U), an (ω).
$(q-164 \mathrm{M}, \mathrm{B})$
453 The solution set for $|2-3 x|>7$ is
A) $\left(-\frac{5}{3}, 3\right)$
B) $\left[-\frac{5}{3}, 3\right]$
C) ϕ
D) $(-\infty,-3) \cup(5 / 3, \infty)$
E) $(-\infty,-5 / 3) \cup(3, \infty)$
F) None of A),$B), C), D)$, and E).
(9-164 B)
454 Sketching the solution set for $x<-\frac{5}{3}$ oR $x>3$ gives
G)
H)

Ј)

() None of $G), H$) and J).
$(9-165 T)$
455 The solution set for $\left|\frac{3}{4}-\frac{2}{3} x\right| \geq \frac{1}{5}$ is
L) $\left(-\infty, \frac{57}{40}\right] \cup\left[\frac{33}{40}, \infty\right)$
M) $\left(-\infty,-\frac{57}{40}\right] \cup\left[-\frac{33}{40}, \infty\right)$

ө) $\left[\frac{33}{40}, \frac{57}{40}\right]$
P) $\left[-\frac{57}{40},-\frac{33}{40}\right]$
R) None of L) , M) , 0), and P).
$(9-165 T)$
(456) $\left|\frac{3}{4}-\frac{2}{3} x\right| \geq \frac{1}{5}$ if and only if
5) $-\frac{1}{5} \geq \frac{3}{4}-\frac{2}{3} x \geq \frac{1}{5}$
T) $\frac{3}{4}-\frac{2}{3} x \geq \frac{1}{5}$
v) $\frac{3}{4}-\frac{2}{3} x \geq-\frac{1}{5}$ OR $\frac{3}{4}-\frac{2}{3} x \leq \frac{1}{5}$
w) $\frac{3}{4}-\frac{2}{3} x \geq \frac{1}{5}$ OR $\frac{3}{4}-\frac{2}{3} x \leq-\frac{1}{5}$
X) None of $s), T), U$), and ω).
$(9-165 B)$
457 What do you multiply $-\frac{2}{3} x \geq-\frac{11}{20}$
by to yield $x \leq \frac{33}{20}$
A) $\frac{2}{3}$
B) $-2 / 3$
C) $3 / 2$
D) $-3 / 2$
E) None of A) , B), C), and D).
$(q-165 B)$
458

picture of the solution set for
F) $\left(-\infty, \frac{33}{40}\right] \cap\left[\frac{57}{40}, \infty\right)$
G) $\left[\frac{33}{40}, \frac{57}{40}\right]$
H) $\left[\frac{57}{40}, \frac{33}{40}\right]$
J) $\left(-\infty, \frac{33}{40}\right] \cup\left[\frac{57}{40}, \infty\right)$
k) None of $F), G), H$), and J).
$\left(9-16^{\prime 7} 7,168\right)$
$459)(x-3)(x-5)<0$ if and only if
4) $x=3$ OR $x=5$
M) $x=-3$ OR $x=-5$
p) $x<3$ AND $x<5$
Q) $x<3$ oR $x<5$
R) None of L), M), P), an (Q).
(9-168T)
(460) Suppose $x \in(3,5)$

which of the following is totally true. $L=$ Left $R=$ Right.

u) $\left(\begin{array}{cc}\text { pos } \quad \text { neg } \\ R-1 \\ R-3\end{array}\binom{\right.$ Lek }{$x-5}<0$
w) $\left(\begin{array}{c}n-g \\ R-L \\ x^{2-3}-3\end{array}\right)\left(\begin{array}{c}p o s \\ L-R \\ x^{-R}\end{array}\right)<0$
x) None of $s), T), u$), and ω).
(9-168M)
170
(461) Suppose $x \varepsilon(5, \infty)$

Which of the following is totally true? $L=$ Left $R=$ Right

neg. $n e q$
B) $\left(\begin{array}{c}R-5 \\ (x-3)\end{array}\binom{R-1}{x^{2}-5}>0\right.$
C) $\quad \begin{gathered}\text { Pos } \\ (x-L)(x-3)(x-5)\end{gathered}>0$

D) $(x-3)(x-5)<0$
E) None of A) , B) , C), and D)
$(q-167 \mathrm{~T})$
(462) The process taught to solve
$x^{2}<8 x-15$ was to solve
F) $x^{2}<8(x-15)$
G) $0<(x+3)(x+5)$
H) $(x+3)(x+5)<0$
J) $(x-3)(x-5)<0$
k) $(x-7)(x-8)<0$
L) None of F), G), H), J), and K).
(9-167M)
(463) Suppose $x \varepsilon(-\infty, 3)$. Which of the following is totally true?
m) $\left(x^{\frac{1}{2}-3}-3\right)\left(\frac{t}{x-5}-5\right)<0$
neg. neg
v) $\left(\begin{array}{l}L-R \\ (x-3)(x-5)\end{array}\left(\begin{array}{l}\text { LeK } \\ x-5\end{array}>0\right.\right.$

R) None of $M), \theta$), and P).
$(q-168 \mathrm{~B})$
(464) Suppose is the process of solving $(x-3)(x-5)<0$ the results of the cases were

what is the solution set?
s) $(3,5)$
T) $[3,5]$
U) $(-\infty, 3) \cup(5, \infty)$
w) $(-\infty, 3) \cap(5, \infty)$
$x)$ None of $(5), \tau), U$), and ω).
$(9-169 T)$
(465) Starting with $2 x^{3}+3 x^{2} \geq 18 x+27$, then subtracting $18 x+27$ from both sides, then factoring somewhat yields
A) $(2 x+3)\left(x^{2}+9\right)$
B) $(2 x-3)\left(x^{2}-9\right)$
C) $(2 x-3)\left(x^{2}-9\right)$
D) $(2 x+3)\left(x^{2}-9\right)$
E) None of $A, B), C)$, and D).
$(9-169 M)$
(466) Factoring $(2 x+3)\left(x^{2}-9\right)$ further yeilds
F) $2(x+3)(x+3)(x-3)$
6) $2\left(x+\frac{3}{2}\right)(x-3)(x-3)$
H) $2\left(x+\frac{3}{2}\right)(x+3)(x-3)$
J) None of $F), G$), and H).
$(9-169 B)$
(467) Which is a picture of $x \in(-\infty,-3)$?
K)
L)

p) None of K), L), and M).
$(9-169 B)$
468 Suppose $x \in(-\infty,-3)$.

Which of the following is totally true?

R) Res neg neg • neg
$2(x-[-3])(x-[-3 / 2])(x-3)<0$
pos - neg 0 neg - neg
s) $2\left(x^{L-R}[-3]\right)\left(x-\left[-\frac{3}{2}\right]\right)(x-3)>0$
$T)$ None of $Q), R)$, an $Q S$).

$$
(9-170 T)
$$

(469) Suppose $x \varepsilon\left(-3,-\frac{3}{2}\right)$.

which of the following is totally true?

mos neg . neg $2(x-[-3])\left(x-\left[\frac{-3}{2}\right]\right)\left(\begin{array}{c}\text { pos } \\ R-L \\ 2-3)>0\end{array}\right.$

z) None of U), w), and X
$(9-170 t)$
470 Suppose $x \varepsilon\left(-\frac{3}{2}, 3\right)$.

Which of the following is totally true?
pos pos $R-L$ pos neg
A) $2\left(x^{R-L}[-3]\right)\left(x^{R-\left[-\frac{3}{2}\right]}\right)\left(x^{L-R}-3\right)<0$
B) pos Req. pos. $2(x-[-3])(x-[-3 / 2])(x-3)<0$
pos: neg $L-R$, neg $_{L-R}$ Pos
c) $2(x-[-3])(x-[-3 / 2])(x-3)>0$
D) None of A), B), and C).
$(9-170 \mathrm{M})$
471 Suppose $x \varepsilon(3, \infty)$.

which of the following is totally true?

$$
\begin{aligned}
& \text { E) } \begin{array}{c}
\text { pos }{ }^{\text {neg }} 2(x-[-3])\left(x-\left[\begin{array}{c}
\text { neg } \\
2(x-3 / 2])
\end{array}\right)(x-3)<0\right.
\end{array}
\end{aligned}
$$

G) pos $\begin{gathered}\text { pos } \\ 2\left(x^{R-L}[-3]\right)\end{gathered} \frac{\text { Pos }}{\text { RUS }}\left(x^{-L}\left[-\frac{3}{2}\right]\right)\left(\begin{array}{c}\text { pos } \\ \text { R-L } \\ x-3)>0\end{array}\right.$
$H)$ None of E), E), ans G).
(9-170 B)
(472) True or False: Suppose $x=-3$.

$$
2(x-[-3])\left(x-\left[-\frac{3}{2}\right]\right)(x-3) \geq 0
$$

T) True
F) False
(9-170B)
(473) Suppose $x=-3 / 2$

True or False: $2(x-[-3])\left(x-\left[-\frac{3}{2}\right]\right)(x-3) \geq 0$.
T) True
F) False
$(9-171 T, M)$
474 Suppose in the process of solving $2(x-[-3])\left(x-\left[-\frac{3}{2}\right]\right)(x-3) \geq 0$ the results of the cases were

What is the solution set?
J) $\left[-3,-\frac{3}{2}\right] \cap[3, \infty)$
K) $\left(-3,-\frac{3}{2}\right) \cup(3, \infty)$
L) $\left[-3,-\frac{3}{2}\right] \cup[3, \infty)$
M) None of J), K), and L).
$(9-171 B)$
475 To $\sin \theta$ all values for x so that $\sqrt{\frac{3 x^{2}-4 x-4}{x+1}} \geq 0$, one needs to solve
N) $3 x^{2}-4 x-4 \geq 0$ and $x+1 \geq 0$
e) $3 x^{2}-4 x-4 \geq 0$
p) $\frac{3 x^{2}-4 x-4}{x+1} \geq 0$
R) None of N) θ), and P)
$(9-171,172)$
476) In solving $\frac{3 x^{2}-4 x-4}{x+1} \geq 0$ marks were made on the number line at what places? The cases for the solving process were derived from these marks.
s) $2 / 3,-2,1$
T) $2,-2,-1$
v) $-2 / 3,-2,-1$
w) $-2 / 3,2,-1$
X) None of 5),$T), U$), and ω).
$(9-173 T)$
477 Suppose $x \varepsilon\left(-1,-\frac{2}{3}\right)$

which of the following is totally true?
A) $\frac{\operatorname{sos} \begin{array}{c}\text { pos } \\ 3\left(x^{L-R}-[-2 / 3]\right)(x-2) \\ x-[-1] \\ R-L \\ h e g\end{array}}{x-R}<0$

Pos. NEG • NEG
B) $\frac{3(x-[-2 / 3])(x-2)}{x-[-1]}>0$ pos

D) None of these
(9-173M)
478 Suppose $x \in\left(-\frac{2}{3}, 2\right)$.

which of the following is totally true?

H) None of E), F), and G).
$(q-173 B)$
(479) When $x=-1$, is $\frac{3\left(x-\left[-\frac{2}{3}\right]\right)(x-2)}{x-[-1]} \geq 0$?
4) Yes
N) N_{0}
$(9-174 T)$
480 when $x=\frac{-2}{3}$; is $\frac{3\left(x-\left[\frac{-2}{3}\right]\right)(x-2)}{x-[-1]} \geq 0$?
y) Yes
N) N_{0}
$(9-174 \mathrm{M})$
481 Suppose in the process of solving $\frac{3\left(x-\left[-\frac{2}{3}\right]\right)(x-2)}{x-[-1]} \geq 0$ the results of the cases were

what is the solution set?
N) $(-1,-2 / 3) \cap(2, \infty)$

Ө) $[-1,-2 / 3] \cup[2, \infty)$
p) $(-1,-2 / 3] \cup[2, \infty)$
R) None of N), θ), and P).
(9-175T)
482 starting with $2 x^{3}+3 x^{2} \geq 8 x+12$, then subtracting $8 x+12$ from both sides, then factoring somewhat yields
5) $(2 x+3)\left(x^{2}-12\right)$
T) $(2 x+3)\left(x^{2}+12\right)$
0) $(2 x+3)\left(x^{2}-4\right)$
w) $(2 x+3)\left(x^{2}+4\right)$
$x)$ None of 5), τ), U), and ω).

$$
(q-1758,9-176 T)
$$

483 In solving

$$
2(x-[-3 / 2])(x-[-2])(x-2) \geq 0
$$

by the TEST POINT METHOD an acceptable list of test points according to the text is
A) $-2,-\frac{3}{2}, 2,3,7 / 4,0$
B) $-2,-\frac{3}{2}, 2,-3,-7 / 4,0,3$
C) $-2,-\frac{3}{2}, 2,-3,0,3$
D) $-2,-\frac{3}{2}, 2,-\frac{3}{2},-7 / 4,0,3 / 2$
$E)$ None of A),$~ B),()$, and D).
$(9-175,176)$
484 For $x=-7 / 4 \quad 15$

$$
2(x-[-3 / 2])(x-[-2])(x-2) \geq 0 ?
$$

y) Yes
N) N_{0}
$(9-175,176)$
(485) For $x=3.15$

$$
2(x-[-3 / 2])(x-[-2])(x-2) \geq 0 ?
$$

y) Yes
N) N_{0}
$(9-175,176)$
(486) Suppose in the process of solving $2\left(x-\left[-\frac{3}{2}\right]\right)(x-[-2])(x-2) \geq 0$ the results of the cases were

What is the solution set?
F) $(-2,-3 / 2] \cup(2, \infty)$
G) $\left[-2,-\frac{3}{2}\right] \cap[2, \infty)$
H) $[-2,-3 / 2] \cup[2, \infty)$
J) $(-2,-3 / 2) \cap(2, \infty)$
K) None of $F), G), H$), an θ).
$(10-178 T)$
(487) Another name for the rectangular coordinate system is the
L) Pythagorean Coordinate System
M) Leibniz Coordinate System
θ) Neut on Coordinate System
P) Cartesian Coordinate System
R) None of $(L), M), \theta)$, and P).

$$
(10-178 T)
$$

488 What quadrant has the X pictured at the right.
S) Quadrant I
T) Quadrant II
U) Quadrant III

w) Quadrant III
(10-178B)
489 Another name for the first term of an ordered pair like $(2,3)$, besides the x coordinate, is
A) hypotenuse
B) ordinate
C) quadrant I
D) origin
E) None of A) , B), C), and D).
(10-178B)
(490) Another name for the second term of an ordered pair like $(2,3)$, besides y-coordinate, is
F) $a b s c i s s a$
G) hypotenuse
H) ordinate
J) origin
K) None of $F), 6), H$), and J).
(10-178B)
(491) True or False for Ordered Pairs:

$$
(2,3) \neq(3,2)
$$

T) True
F) False
(10-179T)
(492) True or False: $\{2,3\}=\{3,2\}$
T) True
F) False
(10-179B)
493 The point P pictured at the right is the point
L) $(1,2)$

M) $(-1,2)$
p) $(-1,-2)$
Q) None of L), M), and P)
(10-180T)
(494) The directed distance from a to b on a line is
R) $a-b$
S) $b-a$
T) $|a-b|$
U) $|b-a|$
w) None of R) , S) , T), and U).
($10-180 \mathrm{~m}$)
(495) The directed distance from 5 to -3 on the number line is
A) 8
B) -8
C) 2
D) -2
E) None of $A(B), C)$, and D).
(10-180B)
(496) The distance (undirected) on a line from a to b is
F) $|a-b|$
G) $b-a$
H) $a-b$
J) $|a+b|$
K) None of $F), 6), H 1$, and J).
(10-180B)
(497) The distance (undirected) from 5 to -3 on the number line is
L) 8
m) -8
e) 2
p) -2
R) None of L), M), θ) and P).
($10-181 \mathrm{M}$)
(498) The distance (undirected) between (x_{1}, y_{1}) an Q $\left(x_{2}, y_{2}\right)$ in the plane is
5) $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
T) $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
v) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
w) $\sqrt{\left(\frac{x_{2}+x_{1}}{2}\right)^{2}+\left(\frac{y_{2}+y_{1}}{2}\right)^{2}}$
x) None of 5$), T), U)$, and ω).
(10-181B)
(499) The distance in the plane between $(-3,2)$ and $(1,-4)$ is
A) $\frac{-4-2}{1-(-3)}$
B) 52
C) $\left(\frac{-3+1}{2}, \frac{2-4}{2}\right)$
D) None of A), B), and C)
(10-182B)
(500) The midpoint between a and b on a line is
E) $\frac{a-b}{2}$
F) $\frac{a+b}{2}$
6) $\sqrt{a^{2}+b^{2}}$
H) $b-a$
J) None of E),$F), G)$, and (H).
($10-182 \mathrm{~B}$)
(501) The midpoint between -3 and 5 on
the number line is
K) 2
L) -1
M) 1
e) 4
P) None of K) , L), M), and θ).
$(10-183 \mathrm{~m})$
(502) The midpoint between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
in the plane is
Q) $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
R) $\left(\frac{x_{1}-x_{2}}{2}, \frac{y_{1}-y_{2}}{2}\right)$
5) $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
T) $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
v) None of $Q), R), s$, and T).
(10-183M)
(503) What is the midpoint in the plane between $(-2,3)$ and $(4,-6)$?
A) $\frac{-6-3}{4-(-2)}$
B) $\sqrt{(4-(-2))^{2}+(-6-3)^{2}}$
C) $\left(\frac{-2+4}{2}, \frac{3-6}{2}\right)$
D) $\left(\frac{-2-4}{2}, \frac{3+6}{2}\right)$
E) None of A) , B) , C), and D).
(10-183B)
504 What is the midpoint in the plane between $(0,0)$ and (x, y).
F) $\left(\frac{x}{2}, \frac{y}{2}\right)$
6) $\frac{y-0}{x-0}$
H) $\left(-\frac{x}{2}, \frac{-y}{2}\right)$
$J)$ None of $F(, G)$, and H)
(10-185m)
505 What is the slope between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane?
k) $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
L) $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
m) $\frac{y_{2}+y_{1}}{x_{2}+x_{1}}$
p) None of $(1), L$), and m).
(10-185B)
(506) What is the slope between $(-1,2)$ and $(3,-4)$ in the plane.
Q) $3 / 2$
R) $-3 / 2$
5) $2 / 3$
T) $-2 / 3$
U) None of Q) , R), S), and T).
$(10-186 \mathrm{~m})$
(507) The slope of a horizontal line 15
A) undefined
B) 1
C) 0
D) None of A) , B), and C).
(10-186B)
(508) The slope of a vertical line is
E) undefined
F) 1
G) 0
H) None of E), E), and G.
$(10-186 \mathrm{~B})$
(509) The slope of the line between $(1,1)$ and $(1,2)$ is
J) 0
K) $\left(\frac{1+1}{2}, \frac{1+2}{2}\right)$
L) 1
M) undefined 0
θ) None of J), k) L), and M).
($10-187 T$)
(510) Parallel lines have
P) slopes that are the negative reciprocal of each other.
Q) slopes both equal to 1 always
R) the same slope
S) slopes that are the negative of each other.
T) None of P) , Q), R), and S).
$(10-187 \mathrm{~m})$
5 III SLOPES OF PERPENDICULAR LINES ARE THE
u) SAME
w) RECIPROCAL OF EACH OTHER
x) the negative of each other
$z)$ NONE OF u), ω), AND x)
(10-187B)
(512) Suppose the given line has slope $-5 / 7$. The slope of the line perpendicular to it 15
A) $-5 / 7$
B) $5 / 7$
C) $\frac{7}{5}$
D) $-7 / 5$
E) None of A) , B) , C), and D).
(10-187B)
(513) The slope of the given line is -2 . The slope of the line perpendicular to it is
F) -2
G) 2
H) $1 / 2$
J) $-1 / 2$
K) None of $F), G), H$), and J).
(10-187B)
(514) The slope of the given line is 3. The slope of the line perpendicular to it is
L) 3
m) -3
e) $1 / 3$
p) $-1 / 3$
R) None of L) M),θ), an $\theta(P)$.
$(10-188 T)$
(515) True or False: For a straight line with positive slope, as you go to the right you go uphill
T) True
F) False
(10-188B)
(516) True or False: For a straight line with negative slope, as you go to the right you go uphill.
T) True
E) False
(10-189T)
(517) A line goes through the point $(1,2)$ with slope $\frac{3}{5}$. Another point on the line is $(6, q)$. What is q ?
s) -1
T) 7
U) 5
w) None of S), T), and U).
(10-189T)
(518) A line goes through the point $(1,2)$ with slope $\frac{3}{5}$. Another point on the line is $(P,-1)$. What is p ?
A) -4
B) 6
C) -2
D) None of A), B), and C).
(10-189B)
(519) Consider the triangle at the right. A way to show the triangle is a right triangle is
$E)$ to show $Q=L+H$.

F) to show the slope of L is the negative of the slope of H.
G) to show the slope of L equals the slope of H
$H)$ to show the slope of L is the negative reciprocal of the slope of H.
J) None of $E(, F), G)$, and H).

193
$(10-191 M)$
(520) The point-slope equation for a line through the point $\left(x_{1}, y_{1}\right)$ with slope m is
k) $\left(x-x_{1}\right)=m\left(y-y_{1}\right)$
L) $\left(y+y_{1}\right)=m\left(x+x_{1}\right)$
m) $\left(y_{1}-x_{1}\right)=m(y-x)$

ө) $y-y_{1}=m\left(x-x_{1}\right)$
p) None of $(K), L), M)$, and θ).
(10-19/B)
(521) An equation for the line through $(2,-3)$ with slope 5 is
Q) $y-2=5(x-(-3))$
R) $y-(-3)=5(x-2)$
s) $x-2=5(y-(-3))$
T) None of $Q), R$), and S).
($10-191 B$)
(522) The equation $y-(-3)=5(x-2)$
is an equation for the line with
A) slope 5 through $(3,-2)$
B) slope 5 through $(-2,3)$
C) slope 5 through $(2,-3)$
D) slope $\frac{1}{5}$ through $(2,-3)$
E) None of A) , B), C), and D).
(10-192 M)
523) As defined in the text, standard form for an equation of a line is (with either $A \neq 0$ or $B \neq 0$)
F) $A x+B y=C$
G) $A x+B y+C=0$
H) $y=m x+b$
J) $y-y_{1}=m\left(x-x_{1}\right)$
K) None of $F), G), H$), and J).
(10-192T)
524 Which equation below is in standard form for an equation for a line?
L) $y-(-3)=5(x-2)$
M) $y-(-3)=\frac{7-(-3)}{5-2}(x-2)$

ө) $y=-\frac{2}{3} x+2$
P) $-5 x+y+13=0$
R) $\frac{y-(-3)}{x-2}=5$
S) None of (L),M) θ,,P), and R).
$(10-193 \mathrm{~m})$
(525) Which of the following is the graph of 2
$T)$ $2 x+3 y=6$?
U)

$\omega)$

$z)$ None of T (,U), ω), and X).
(10-193)
(526) The graph at the right is the graph of
A) $3 x+2 y=0$
B) $3 x+2 y=\sqrt{3^{2}+2^{2}}$
C) $3 x+2 y=6$
D) $2 x+3 y=0$
E) $2 x+3 y=6$
F) None of A) , B), C), D), and E).
$(10-194 T)$
527 The 2-point equation for a line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
G) $y-y_{1}=\frac{x_{2}-x_{1}}{y_{2}-y_{1}}\left(x-x_{1}\right)$
H) $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
J) $y_{2}-y_{1}=m\left(x_{2}-x_{1}\right)$
K) $y_{2}-y_{1}=\frac{y-y_{1}}{x-x_{1}}\left(x_{2}-x_{1}\right)$
L) None of (G), H), J), and K).
(10-194 M)
(528) The equation $y-(-3)=\frac{7-(-3)}{5-2}(x-2)$ is an equation for the line through M) $(-3,2)$ and $(5,7)$
$\theta)(2,-3)$ and $(7,5)$
P) $(-3,2)$ and $(-5,-7)$
R) $(2,-3)$ and $(5,7)$
s) None of $M), \theta), p$), and R).
(10 -194 B)
529 The equation $y+3=\frac{10}{3}(x-2)$ put in standard form is
T) $\frac{10}{3} x+y=\frac{29}{3}$

ט) $-\frac{10}{3} x+y=-\frac{29}{3}$
w) $\frac{-10}{3} x+y=\frac{29}{3}$
x) $\frac{10}{3} x+y=-\frac{29}{3}$
$z)$ None of $\tau),(u),(\omega)$, and $X)$.

198
($10-195 \mathrm{~T}$)
530 What is the
x-intercept for the graph at the right?

A) $(0,2)$
B) $(3,0)$
(10-195t)
531 what is the y-intercept for the
 graph at the right?
A) $(0,2)$
B) $(3,0)$
(10-195 M)
(532) what is the x-intercept for $3 x-4 y=12$?
C) $(12,0)$
D) $(4,0)$
E) $(0,4)$
F) $(0,-3)$
G) $(-3,0)$
H) None of $(C), D), E), F)$, and G).
(10-195B)
$\frac{533}{3 x-4 y}$ what is the y-intercept for $3 x-4 y=12$?
ప) $(0,-3)$
K) $(-3,0)$
L) $(0,4)$
m) $(4,0)$
$\theta)$ None of $J),(K), L)$, and M).
$(10-195 \mathrm{M})$
534 What is the slope-intercept equation
for a line? for a line?
p) $y-y_{1}=m\left(x-x_{1}\right)$
Q) $y=m x+b$
R) $A x+B y+C=0$
S) $A x+B y=C$
$T)$ None of $P(, Q), R)$, and S).
$(10-195 B)$
$\underbrace{535}_{\text {form is }} 2 x+3 y=6$ put in slope-intercept
ن) $y=\frac{2}{3} x+2$
w) $y=\frac{-2}{3} x-2$
x) $y=-\frac{2}{3} x+2$
$z)$ None of $(0), \omega)$, and x).
$\left(10-196 B^{2}\right)$
(536) What is the slope for $2 x+3 y=6$?
A) $\frac{3}{2}$
B) $2 / 3$
C) $-2 / 3$
D) $-3 / 2$
E) None of A) , B), C), and D).
$(10-196 B)$
537 what is the y-intercept for $y=\frac{-2}{3} x+2$?
A) $(0,2)$
B) $(2,0)$
C) $\left(-\frac{2}{3}, 0\right)$
D) $(0,-2 / 3)$
E) None of A) , B), C), and D)
(10-197T)
538 What is the slope of the line perpendicular to $4 x+3 y=12$?
E) $-\frac{4}{3}$
G) $4 / 3$
H) $-3 / 4$
J) $\frac{3}{4}$
K) None of E) G),H), and J).
$(10-197 T)$
(539) What is an equation for the line perpendicular to $4 x+3 y=12$ that passes through $(-2,5)$?
L) $y-2=-4 / 3(x-5)$
M) $y-5=-4 / 3(x-(-2))$
Q) $y-5=\frac{3}{4}(x-(-2))$
P) $y-(-2)=\frac{3}{4}(x-5)$
R) None of $(L), M), \theta)$, and P)
$(10-197 B)$
$\left.\begin{array}{l}540 \\ \text { form cutting } y-5\end{array}\right)=\frac{3}{4} x+\frac{6}{4}$ in to standard form can give
5) $-\frac{3}{4} x+y=\frac{13}{2}$
T) $-\frac{3}{4} x+y=\frac{11}{4}$
v) $-\frac{3}{4} x+y=-\frac{13}{2}$
w) None of 5), T), and U).
$(10-198 T)$
(541) A form for a horizontal line equation is
A) $x=K$
B) $y=b$
C) $x=0$
D) None of A), B), and C).
$(10-198 \mathrm{M})$
(542) An equation for the horizontal line through $(2,3)$ is
E) $x=2$
F) $x=3$
G) $y=2$
H) $y=3$
J) None of E), F), G), and H)
(10-198B)
543 A form for a vertical line equation is
k) $x=k$
L) $y=b$
M) $y=0$
θ) None of $(K), L$), and M).
$(10-199 T)$
544 An equation for the vertical line through $(2,3)$ is.
p) $x=2$
Q) $x=3$
R) $y=2$
S) $y=3$
T) None of $P(Q), R$), and S).

203
(10-199B)
(545) The equation $0 x+1 y=3$ is standard
form for
U) a vertical line through $(2,3)$
w) a horizontal line through $(2,3)$
x) a vertical line through $(1,3)$
z) None of U), ω), and X).
(10-199B)
(546) The equation $1 x+0 y=2 \mathrm{ls}$
standard form for
A) a vertical line through $(2,3)$
B) a horizontal line through (1,2)
C) a vertical line through $(1,2)$
D) None of A), B), and C).
($10-201 \mathrm{~m}$)
547 standard form for an equation for a circle with center (h, k) and radius r 15
E) $(x-k)^{2}+(y-h)^{2}=r$
F) $(x-h)^{2}+(y-k)^{2}=r^{2}$
G) $(x-h)^{2}+(y-k)^{2}=\sqrt{r}$
H) $(x-k)^{2}+(y-h)^{2}=r^{2}$
J) None of $E)(F), G)$, and H).
(11-201B)
548 State the center and radius of the circle $(x-2)^{2}+(y+3)^{2}=4$
K) center $(2,-3)$ and radius 4
L) center $(-2,3)$ and radius 4
M) center $(2,-3)$ and radius 2
$\theta)$ center $(-2,3)$ and radius 2
P) None of $K),(), M$), and θ).
(11-201B)
(549) Give an equation for the circle with center $(2,-3)$ and radius 2 .
Q) $(x-2)^{2}+(y+3)^{2}=4$
R) $(x-2)^{2}+(y+3)^{2}=2$
S) $(x+2)^{2}+(y-3)^{2}=4$
T) $(x+2)^{2}+(y-3)^{2}=2$
u) None of Q), R), S), and T).
(11-202T)
550 An equation for the circle with center (0,0) an radius 3 is
A) $x^{2}+y^{2}=3$
B) $x^{2}+y^{2}=9$
C) $x+y=3$
D) $x+y=9$
E) None of A) , B) , C), and D).
(11-202M)
551 Beginning steps for putting $2 x^{2}+2 y^{2}-12 x+20 y-30=0$ in standard form are

$$
\begin{aligned}
& x^{2}+y^{2}-6 x+10 y-15=0 \\
& \left(x^{2}-6 x\right)+\left(y^{2}+10 y\right)=15
\end{aligned}
$$

which is a correct next step?
F) $\left(x^{2}-6 x+36\right)+\left(y^{2}+10 y+100\right)=15$
G) $\left(x^{2}-6 x+9\right)+\left(y^{2}+10 y+25\right)=15$
H) $\left(x^{2}-6 x-9\right)+\left(y^{2}+10 y+25\right)=15+9+25$
J) $\left(x^{2}-6 x+9\right)+\left(y^{2}+10 y+25\right)=15+9+25$
K) None of $F), G), H$), and τ).
(11-202B)
(552) Which of the following follows from

$$
\left(x^{2}-6 x+9\right)+\left(y^{2}+10 y+25\right)=15+9+25 ?
$$

L) $(x-3)^{2}+(y+5)^{2}=49$
M) $(x+3)^{2}+(y+5)^{2}=7$

Ө) $(x-9)^{2}+(y+25)^{2}=49$
P) $(x-6)^{2}+(y+10)^{2}=49$
R) None of $(L), M), \theta)$, and $P)$.
$(11-202 B, 206 T)$
(553) Suppose $(x-3)^{2}+(y+5)^{2}=49$. What is the center and radius?
5) center $(3,-5)$ and radius 49
T) center $(3,-5)$ and radius 7
U) center $(-3,5)$ and radius 49
$\omega)$ center $(-3,5)$ and radius 7
x) None of $(S), T), U$), and ω).
(11-203M)
(554) Beginning steps for putting

$$
3 x^{2}+3 y^{2}+5 x-2 y-9=0 \text { in standard }
$$

form are

$$
\begin{aligned}
& x^{2}+y^{2}+\frac{5}{3} x-\frac{2}{3} y-3=0 \\
& \left(x^{2}+\frac{5}{3} x\right)+\left(y^{2}-\frac{7}{3} y\right)=3
\end{aligned}
$$

What is a correct next step?
A) $\left(x^{2}+\frac{5}{3} x+\frac{25}{9}\right)+\left(y^{2}-\frac{7}{3} y+\frac{49}{9}\right)=3$
B) $\left(x^{2}+\frac{5}{3} x+\frac{25}{9}\right)+\left(y^{2}-\frac{7}{3} y+\frac{49}{9}\right)=3-\frac{25}{9}-\frac{49}{9}$
C) $\left(x^{2}+\frac{5}{3} x+\frac{25}{36}\right)+\left(y^{2}-\frac{7}{3} y+\frac{49}{36}\right)=\frac{108}{36}+\frac{25}{36}+\frac{49}{36}$
D) $\left(x^{2}+\frac{5}{3} x+\frac{25}{36}\right)+\left(y^{2}-\frac{7}{3} y+\frac{49}{36}\right)=\frac{108}{36}+\frac{25}{36}-\frac{49}{36}$
E) None of $A(, B), C)$, and D)
($11-203 \mathrm{M}, \mathrm{B}$)
(555) What needs to be added to $x^{2}+\frac{5}{3} x$ to make it a perfect square?
F) $\frac{25}{9}$
G) $\frac{25}{36}$
H) $\frac{100}{9}$
J) None of F), G), and H).
($11-203 \mathrm{M}, \mathrm{B}$)
(556) What needs to be added to $y^{2}-\frac{7}{3} y$ to make it a perfect square?
k) $-\frac{49}{36}$
L) $\frac{49}{36}$
M) $-\frac{49}{9}$
e) $\frac{49}{9}$
p) None of $(k), L), M)$, and θ).
(11-203B)
$557 \quad y^{2}-\frac{7}{3} y+\frac{49}{36}=$
Q) $\left(y-\frac{7}{6}\right)^{2}$
R) $(y-7 / 3)^{2}$
S) $\left(y+\frac{7}{6}\right)^{2}$
T) None of Q) , R), and S).
($11-203 B$)
(558 $x^{2}+\frac{5}{3} x+\frac{25}{36}=$
v) $\left(x+\frac{5}{3}\right)^{2}$
w) $\left(x-\frac{5}{3}\right)^{2}$
x) $\left(x+\frac{5}{6}\right)^{2}$
$z)$ None of U), ω), and X).
(11-203B,204T)
(559) What is the radius for the circle $\left(x+\frac{5}{6}\right)^{2}+\left(y-\frac{7}{6}\right)^{2}=\frac{182}{36}$
A) $\frac{182}{36}$
B) $\frac{\sqrt{182}}{6}$
C) $\frac{182}{6}$
D) None of
A),
B), and C)
($11-204 \mathrm{M}$)
(560) What is the graph of $(x-1)^{2}+(y-3)^{2}=0$.
E) A point
F) A circle
G) No graph
H) A line
J) None of E), F), G), and H).
$(11-204 T)$
561) What is the graph of

$$
\left(x-\left[-\frac{5}{6}\right]\right)^{2}+\left(y-\frac{7}{6}\right)^{2}=\left(\frac{\sqrt{182}}{6}\right)^{2} ?
$$

K) A point
L) A circle
M) No graph
$\theta)$ None of K), L), and M).
(11-203T)
562 What is the graph of $(x-3)^{2}+(y-[-5])^{2}=7^{2}$
P) A point
Q) A circle
R) No graph
5) A line
T) None of $P(, Q), R)$, and S).
(11-204M)
(563) Name a point on the graph of

$$
(x-1)^{2}+(y-3)^{2}=0
$$

ט) $(-1,-3)$
w) $(1,3)$
$x)$ There are no points on the graph
z) None of $(U), w$), and X).
(11-204B)
(564) What is the graph of $(x-1)^{2}+(y-3)^{2}=-10$?
A) A point
B) A circle
C) No graph
D) A line
E) None of A) , B) , C), and D).
(11-206T)
565 Name an equation whose graph is the graph at the right.
F) $x=y^{2}$
G) $x=-y^{2}$
H) $y=x^{2}$
J) $y=-x^{2}$
K) None of $F(, G), H)$, and J).
(11-206M)
566 Name an equation whose graph is the graph at the right.
L) $x=y^{2}$
M) $x=-y^{2}$

Q) $y=x^{2}$
P) $y=-x^{2}$
R) None of $(L), M), \theta$), and P).
(11-206B)
(567) Name an equation whose graph is the graph at the right.
S) $x=y^{2}$
T) $x=-y^{2}$

U) $y=x^{2}$
w) $y=-x^{2}$
x) None of $(s), \tau), U$), and ω)
(11-206B)
(568) Name an equation whose graph is the graph at the right.
A) $x=y^{2}$
B) $x=-y^{2}$
C) $y=x^{2}$
D) $y=-x^{2}$
E) None of A), B), C), and D).
(11-207B)
569 What is the vertex and axis of symmetry of $y=(x-1)^{2}+2$?
F) vertex is (1,2) and axis of symmetry is $y=2$
G) Vertex is (1,2) and axis of symmetry is $x=1$.
H) vertex is $(-1,2)$ and axis of symmetry is $x=-1$.
$J)$ vertex is $(-1,2)$ and axis of symmetry is $y=-2$.
(11-208T)
570 What is the vertex and axis of symmetry of $y=(x+2)^{2}+3$?
K) vertex $(2,3)$ and axis of symm.is $x=2$
L) vertex $(2,3)$ and axis of symm. is $y=3$
M) vertex $(-2,3)$ and axis of symm. is $x=-2$
Q) Vertex $(-2,3)$ and axis of symm. is $y=3$.
p) None of $(k),(), M)$, and θ).
($11-208 \mathrm{M}$)
571 What is the vertex $a_{2} \theta$ axis of symmetry of $y=-(x-1)^{2}+2 ?$
Q) vertex $(-1,2)$ and axis of symm. is $k=-1$.
R) Vertex $(-1,2)$ and axis of symm. is $y=2$
5) vertex $(1,-2)$ and axis of symm. is $x=-2$
T) vertex $(1,-2)$ and axis of symm is $y=-2$
U) None of $Q), R), S)$, and T).
(11-208B)
(572) What is the vertex for $x=(y-1)^{2}+2$?
A) $(2,1)$
B) $(1,2)$
C) $(-1,2)$
D) $(2,-1)$
E) None of A) , B) , C), and D).
(11-208B)
573 What is the axis of symmetry for $x=(y-1)^{2}+2$?
F) $y=2$
G) $x=2$
H) $y=1$
J) $y=-1$
k) $y=2$
L) None of (F), G), H), J), and K).
(11-209T)
(574) what is the vertex for $x=(y+3)^{2}+2$?
M) $(-3,2)$
e) $(2,-3)$
P) $(3,2)$
Q) $(2,3)$
R) None of M),θ) P), and Q).
($11-209 \mathrm{~T}$)
575 What is the axis of symmetry for $x=(y+3)^{2}+2 ?$
5) $x=2$
T) $y=3$

ن) $y=-3$
w) $x=-2$
x) None of s), T), () , and w).
$(11-209 T)$
(576) What is the vertex for $x=(y+1)^{2}-3$?
A) $(1,-3)$
B) $(-3,1)$
C) $(-1,3)$
D) $(-3,-1)$
E) None of (A), B) , C), and D).

$$
(11-209 T)
$$

577 what is the axes of symmetry for

$$
x=(y+1)^{2}-3 ?
$$

F) $x=-3$
G) $y=1$
H) $y=-3$
J) $x=1$
K) None of F) , G), H), and J).
($11-209 \mathrm{M}$)
578 What is the vertex for $x=-(y-1)^{2}+2$?
L) $(2,1)$
M) $(1,2)$
e) $(-1,2)$
P) $(2,-1)$
Q) None of $(L), M), \theta)$, and P).
(11-209M)
579 What is the axis of symmetry for $x=-(y-1)^{2}+2 ?$
R) $x=2$
5) $y=2$
T) $y=1$
v) $y=-1$
w) None of R), S) , T), and τ).
(11-209B)
580 What is the vertex for $x=-(y-1)^{2}-2$?
A) $(-2,1)$
B) $(1,-2)$
C) $(-2,-1)$
D) $(-1,-2)$
E) None of A) , B) , C), and D).
(11-209B)
581 What is the axis of symmetry for $x=-(y-1)^{2}-2 ?$
F) $x=-2$
G) $x=1$
H) $y=1$
J) $y=-2$
k) $y=-1$
L) None of $F(, G), H), J)$, and K).

216
($11-210 \mathrm{M}$)
(582) At the right are 3 parabolas. Parabola B is the graph of $y=x^{2}$. which is the graph of $y=\frac{1}{4} x^{2}$?
A) A

C) c
(11-210M)
583 At the right are 3 parabolas. Parabola B is the graph of $y=x^{2}$.
which is the graph of $y=4 x^{2}$?
A) A
C) C
(11-211T)
(584) At the right is a parabola that opens up, with vertex $(6,4)$. $P(1,10)$ is a point on the parabola. What are the
 coordinates of the symmetric partner Q of p ?
m) $(5,10)$
D) $(6,10)$
P) $(11,10)$
R) $(9,10)$
s) None of $M), \theta), P$), and R).
($11-211 \mathrm{~B}$)
585 The graph of $y=4 x^{2}-16 x+13$ is a parabola that opens up with vertex $(2,-3)$. Which is a pair of symmetric partners?
T) $(0,13)$ and $(2,13)$
v) $(0,13)$ and $(-3,13)$
w) $(0,13)$ and $(-6,13)$
X) $(0,13)$ and $(4,13)$
z) None of $\tau), U), \omega$), and X).
$(11-2113)$
(586) The graph of $y=4 x^{2}-16 x+13$ is a parabola that opens up with vertex at $(2,-3)$. The point $(1,8)$ is on the parabola. The symmetric partner of $(1, q)$ is
A) $(4,13)$
B) $(1,3)$
C) $(3,1)$
D) $(1,1)$
E) $(1,2)$
F) $(2,1)$
G) None of A), B), C), D), E), and F).
(11-211B)
587 The graph of $y=4 x^{2}-16 x+13$ is a parabola that opens up with vertex $(2,-3)$. $(4,13)$ is a point on the parabola. The symmetric partner of $(4,13)$ is
H) $(2,13)$
J) $(0,13)$
K) $(4,11)$
L) $(4,9)$
M) $(-1,13)$
θ) None of H), J), K) L), and M).
(11-212T)
(588) Which of the following is standard form for a parabola that opens up with vertex (h, k)? $\quad a>0$
P) $y=a(x-h)^{2}+k$
Q) $y=a(x-k)^{2}+h$
R) $x=a(y-k)^{2}+h$
S) $x=a(y-h)^{2}+k$
T) None of P), Q) , R), and S).
(11-212T)
(589) Which of the following is standard form for a parabola that opens left with vertex $(h, k) ? a<0$
u) $y=a(x-h)^{2}+k$
w) $y=a(x-k)^{2}+h$
x) $x=a(y-k)^{2}+h$
y) $x=a(y-h)^{2}+k$
$z)$ None of $(u),(w), x)$, and y).
(11-212B)
(590) what is the vertex for $y=4(x-2)^{2}-3$?
A) $(-2,3)$
B) $(2,-3)$
C) $(-3,2)$
D) $(3,-2)$
E) $(-2,-3)$
F) $(-3,-2)$
G) None of $A(B), C), D), E)$, and F).
(11-212B)
(591) What is the axis of symmetry for $y=4(x-2)^{2}-3 ?$
H) $x=-3$
J) $x=-2$
K) $x=2$
L) $y=-3$
M) $y=-2$
e) $y=2$
P) None of $(H), J), K), L), M), O L$.

$$
(11-212 m)
$$

(592) Which way does the parabola

$$
y=4(x-2)^{2}-3 \text { open? }
$$

Q) $u p$
R) down
S) right
τ) Left
(11-214T)
(593) Which way does the parabola $y=3 x^{2}-30 x+79$ open?
U) up
w) down
x) right
z) left
$(11-214 T)$
594 To begin to put $y=3 x^{2}-30 x+79$ into standard form for a parabola, rewrite the equation to

$$
y=3\left(\frac{}{}\right)+79
$$

The value inside the parent theses is
A) $x^{2}-30 x$
B) $x^{2}-30 x+\frac{79}{3}$
C) $x^{2}-10 x$
D) $x^{2}-10$
E) None of A) , B), C), and D).
$(11-214 T, M)$
595 To put $y=3 x^{2}-30 x+79$ into stand ard form for a parabola, first factor

$$
y=3\left(x^{2}-10 \pi\right)+79
$$

The next line is to complete the square properly. Which below is correct.
F) $y=3\left(x^{2}-10 x+25\right)+79$
G) $y=3\left(x^{2}-10 x+25\right)+75+79$
H) $y=3\left(x^{2}-10 x+25\right)-75+79$
J) $y=3\left(x^{2}-10 x-25\right)-75+79$
k) $y=3\left(x^{2}-10 x+100\right)-300+79$
L) None of $F), G), H), ~ J)$, and K).
(11-214)
596 Which way does the parabola $y=3(x-5)^{2}+4$ open?
M) $u p$
θ) down
P) right
R) left
(11-214B)
(597) What is the vertex for the parabola $y=3(x-5)^{2}+4$?
S) $(5,-4)$
T) $(5,4)$
v) $(4,5)$
w) $(-4,5)$
x) $(-5,4)$
z) None of 5) , T), U), ω), $a_{n d} x$).
(11-214)
598 What is the vertex for the parabola $y=3 x^{2}-30 x+79$?
A) $(1,3)$
B) $(-30,79)$
C) $(5,-4)$
D) $(-4,5)$
E) $(4,5)$
F) $(5,4)$
G) $(-5,4)$
H) $(4,-5)$
$J)$ None of $A(B),(C), D), E), F), G)$, and (H)
$(11-215 T)$
(599) What is the axis of symmetry for $y=3(x-5)^{2}+4$
k) $x=5$
L) $x=-5$
M) $y=4$
Q) $y=5$
P) None o(K) L), M), and θ).
$(11-215 t)$
600 A pair of symmetric partners for

$$
y=3(x-5)^{2}+4 \text { is }
$$

Q) $(0,4)$ and $(10,4)$
R) $(0,79)$ and $(5,79)$
5) $(0,75)$ and $(5,75)$
T) $(0,79)$ and $(10,79)$
U) None of Q) , R), S), and T).
(11-215B)
601 To begin to put $x=-2 y^{2}-12 y-17$ into standard form for a parabola, first factor to $x=-2$ (\qquad)-17. The value inside the parentheses is
A) $y^{2}-12 y$
B) $y^{2}-6 y$
C) $y^{2}+12 y$
D) None of A) , B), and C).

224
(11-215B,216T)
602 To put $x=-2 y^{2}-12 y-17$ into standard form for a parabola, first factor to get

$$
x=-2\left(y^{2}+6 y,\right)-17
$$

A correct next step is
E) $x=-2\left(y^{2}+6 y+36\right)-17$
F) $x=-2\left(y^{2}+6 y+9\right)-9-17$
G) $x=-2\left(y^{2}+6 y+9\right)-18-17$
H) $x=-2\left(y^{2}+6 y+9\right)+18-17$
J) None of E) , F), G), and H).
(11-216M)
(603) What is the vertex for $x=-2(y+3)^{2}+1$?
k) $(3,1)$
L) $(1,3)$
M) $(-3,1)$

Ө) $(1,-3)$
P) None of K),L),M), and θ).
($11-216 \mathrm{M}$)
(604) What is the axis of symmetry for

$$
x=-2(y+3)^{2}+1
$$

Q) $x=3$
R) $x=-3$
S) $y=3$
T) $y=-3$
U) $x=1$
U) None of $Q(R), S), T$, and U).
($11-216 \mathrm{~m}, \mathrm{~B}$)
605) The parabola $x=-2(y+3)^{2}+1$ opens
A) $u p$
B) down
C) right
D) left
($11-216 \mathrm{~B}$)
606 For the parabola $x=-2 y^{2}-12 y-17$, the vertex is $(1,-3)$ and a point on the parabola is $(-17,0)$. Name the symmetric partner of $(-i 7,0)$
E) $(-1,2,-6)$
F) $(-17,-3)$
G) $(19,0)$
H) $(1,0)$
J) None of E (,$F), G$), and H).

$$
(11-217 T)
$$

607 For the parabola $x=a y^{2}+b y+c$, with $a<0$, the parabola opens
k) up
L) down
M) right
θ) left

226
$(11-217 T)$
(608) For the parabola $y=a x^{2}+b x+c$, with $a<0$, the parabola opens
p) up
Q) down
R) right
s) left
(11-218T)
609 A function is a set of ordered
pairs such that
τ) no two ordered pairs have the same second term.
U) no two ordered pairs have the same first term.
w) each first term is a real number and each second term is a real number.
X) None of T), U), and ω).
(11-218T)
(610) True or False: $g=\{(1,3),(2,3),(5,6)\}$ is a function.
T) True
F) False
$(12-218 T)$
(611) True or False: $\{(1,3),(2,5),(4,7)\}$ is a function.
T) True
F) False
(12-218B)
(612) True or False: $\{(1,5),(2,7),(1,8)\}$ is a function.
T) True
F) False
(12-218B)
(613) True or False: $:\{(A, 3),(B,\{1,2\}),((2,3),\{5\})\}$
is a function.
T) True
F) False
(12-218m)
(614) What can the blank $\{(1,5),(2,7),(-, 8)\}$ be filled in with so that the set is not a function.
A) 1
B) 3
C) 5
D) 7
E) None of A),$B), C)$, and D).
(12-219T)
(615) The set of all first terms of a function f is
F) $f(x)$
G) the domain
H) the range
J) one - to -one
K) None of F), G), H), and J).
(12-219T)
(616) The set of all second terms of a function f is
L) $f(x)$
m) the domain
θ) the range
P) one-to-one
R) None of $(L), M), \theta$), and P)
(12-219T)
617 which of the following functions has domain $\{1,2,4\}$?
S) $\{(1,2),(4,1)\}$
T) $\{(7,1),(8,2),(9,4)\}$
U) $\{(2,1),(4,1)\}$.
w) $\{(1,3),(2,5),(4,7)\}$
x) None of 5$), T), U)$, and (ω).
(12-219T)
618 which of the functions below has range $\{3,5,7\}$?
A) $\{(1,3),(2,5),(4,7)\}$
B) $\{(3,5),(7,3)\}$
C) $\{(3,1),(5,2),(7,4)\}$
D) None of A), B), and ().
$(12-219 M)$
(619) What is the domain of $\{(1,3),(2,3),(5,6)\}$?
F) $\{1,2,3,5,6\}$
F) $\{3,3,6\}$
G) $\{3,6\}$
H) $\{1,2,5\}$
J) None of $E), F), G)$, and H).
(12-219B)
(620) What is the range of $\{(1,2),(5,2)\}$?
k) $\{1,5\}$
L) $\{1,2,5\}$
M) $\{2\}$
θ) 2
p) None of $(k), L), M$), and θ)
$(12-219 B)$
621 What is the domain for $\{(A, 3),(B,\{1,2\}),((2,3),\{5\}\} ?$
Q) $\{A, B, 2\}$
R) $\{A, B,(2,3)\}$
S) $\{3,\{1,2\},\{5\}\}$
T) None of Q), R), and S)
(12-219B)
$\frac{622}{}$ What is the range for $\{(A, 3),(B,\{1,2\}),(C,\{5\})\} ?$
U) $\{3,2,5\}$
w) $\{3,1,2,\{5\}\}$
x) $\{3,\{1,2\}, 5\}$
$z)$ None of $(u),(\omega)$, and $X)$?
(12-220m)
(623) Let $f=\{(1,3),(2,5),(4,7)\} . f(2)=$
A) 5
B) $\{5\}$
C) $(2,5)$
D) $\{2,5\}$
E) None of $A, B), C)$, and D).
(12-220T)
(624) True or False: A function associates each element in the domain with only one element in the range.
T) True
F) False
$(12-220 T)$
625 Suppose f is a function and $f(1)=3$.
Name an element of the function f.
F) $\{3\}$
G) $\{1\}$
H) $(1,3)$
J) $(3,1)$
k) None of $F), G), H$), and J).
(12-220M)
(626) Suppose f is a function and $(2,5) \varepsilon f$. $f(2)=$
L) 5
M) $\{5\}$

ө) $\{2,5\}$
p) $\{(2,5)\}$
R) None of L) $(M), \theta$), and P).
(12-220B)
(627) True or False: If g is a function and $g(1)=3$, then $(1,3) \varepsilon g$.
T) True
F) False

$$
(12-221 M)
$$

(628) Suppose $y=x^{2}$ defines a function
named m. $m=$
5) $\left\{\left(x^{2}, x\right) \mid x\right.$ is a real $\}$
T) $\left\{\left(x^{2}, y\right) \mid y=x^{2}\right\}$
u) $\left\{\left(y, x^{2}\right) \mid y=x^{2}\right\}$
w) $\left\{(x, y) \mid y=x^{2}\right\}$
$x)$ None of $S), T$), U), and w).
(12-221M)
(629) Suppose $y=x^{2}$ is an equation that defines the function $m=$ $\left\{(x, y) \mid y=x^{2}\right\}$. Which of the following is an element of m ?
A) $(4,2)$
B) $(4,-2)$
C) $(5,10)$
D) $(1,-1)$
E) None of A),B),C), and D).
(12-221B)
630 Suppose $y=x^{2}$ defines a function m and x is associated with the first terms of m.

$$
m(-2)=
$$

F) $\sqrt{-2}$
G) $-\sqrt{2}$
H) 4
J) -4
K) None of $F), G), H$), and J).
(12-221B)
631 Suppose $y=x^{2}$ defines a function and x is associated with the first terms.
Now x is called the
L) independent variable.
M) dependent variable.
8) ordinate
p) None of L),M), and θ).
(12-22/B)
(632) Suppose $y=x^{2}$ defines a function and y is associated with the second terms.
Now y is called the
Q) independent variable
R) dependent variable
S) $a b s c i s s a$
T) None of $(Q), R)$, and S).
$(12-222 T)$
633 For the function defined by $m(x)=\pi^{2}$, $m(a+b)=$
A) $a^{2}+b^{2}$
B) $2 a+2 b$
C) $a^{2}-2 a b+b^{2}$
D) $a^{2}+2 a b+b^{2}$
E) None of $A, B), C)$, and D).
(12-222T)
(634) For the function defined by $m(x)=x^{2}$,

$$
m(-2 x+1)=
$$

F) $-4 x^{2}+1$
6) $4 x^{2}+1$
H) $-4 x+2$
J) $4 x^{2}+4 x+1$
K) None of $F),(\sigma), H$, and J).
(12-222B)
635 For the function defined by

$$
P(x)=x^{2}+2 x+1, \quad P(a+b)=
$$

L) $a^{2}+b^{2}+2 a+2 b+1$
M) $a^{2}+2 a b+b^{2}+2 a+2 b+1$
Q) $a^{2}+2 a b+b^{2}+2 a+b+1$
P) $a^{2}+a b+b^{2}+a+b+1$
R) None of L),M),θ), and P)
(12-222B)
(636) For the function de fined by
$p(x)=x^{2}+2 x+1, \quad p(x+h)=$
5) $x^{2}+2 x h+h^{2}+2 x+2 h+1$
T) $x^{2}+h^{2}+2 x+2 h+1$
v) $x^{2}+h^{2}+2 x+h+1$
w) $x^{2}+2 x h+h^{2}+2 x+h+1$
$x)$ None of S), T), U), and ω).
$(12-222 B)$
637 For the function defined by $P(x)=x^{2}+2 x+1$, which ordered pair is an element of p ?
A) $(-2,0)$
B) $(-2,-1)$
C) $(-2,1)$
D) $(-2,9)$
E) None of A), B), C), and D).
(12-223M)
(638) Suppose $3 Q+2 t=7$ defines a function K, where t is the independent variable. $K(-4)=$
F) 5
G) $(-4,5)$
H) $-1 / 3$
J) $\frac{19}{2}$
K) $(-4,19 / 2)$
L) None of $F), 6), H$),J), and K).
(12-223B) 236
(639) Suppose $3 A+2 t=7$ defines a function l, where the independent variable is $\mathcal{A} . l(5)=$
M) $(-4,5)$
e) $(5,-4)$
p) -4
R) 5
S) None of $(m), \theta), p)$, and $($).
(12-224T)
(640) True or False: The set of all ordered pairs (x, y) af reals that satisfies $x^{2}+y^{2}=1$ is a function.
T) True
F) False
(12-224M)
(641) True or False: The set of all ordered pairs (y, x) of reals that satisfies $x^{2}+y^{2}=1$ is a function.
T) True
F) False
(12-225T)
(642) True or False: $y=x^{2}$ defines a function when x is the independent variable.
T) True
F) False
(12-225M)
643) True or False: $y=x^{2}$ defines a function when y is associated with the first terms.
T) True
F) False
(12-225B)
644 For a graph, suppose the horizontal axis is associated with the first terms. The graph is the graph of a function if
T) No horizontal line intersects the graph twice.
U) No vertical line intersects the graph twice.
w) The graph does not intersect the line $y=x$ twice.
$x)$ None of $T), U)$, and ω).
(12-226T)
645 Is the graph of $x^{2}+y^{2}=1$ shown at the right the graph of a function?
y) Yes
$N) N_{0}$

(12-226T)
646) Is the graph of $x=y^{2}$ shown at the right the graph of a function?
y) Yes
N) N_{0}

$(12-226 M)$
647 Is the graph of

$$
3 A+2 t=7 \text { shown at }
$$ the right the graph of a function?

(12-226B)
(648) Is the graph of $3 \Delta+2 t=7$ shown at the right the graph of a function?

$$
\begin{aligned}
& \text { y) Yes }\left(\begin{array}{l}
t \text { is associated } \\
\text { with the first } \\
\text { terms. }
\end{array}\right) .
\end{aligned}
$$

$$
(12-229 T)
$$

649 What is the understood domain for

$$
f(x)=\frac{1}{(x-3)(x-4)} ?
$$

A) $(-\infty,-4) \cup(-4,-3) \cup(-3, \infty)$
B) $(-\infty,-4) \cap(-4,-3) \cap(-3, \infty)$
C) $(-\infty, 3) \cup(3,4) \cup(4, \infty)$
D) $(-\infty, 3) \cap(3,4) \cap(4, \infty)$
E) None of A),
B),$C)$, and
D).
(12-229B)
650 What is the understood domain for

$$
g(x)=\sqrt{3-2 x} ?
$$

F) $(-\infty,-2 / 3]$
G) $(-\infty, 3 / 2]$
H) $\left(-\infty, \frac{2 / 3}{3}\right]$
J) $\left(-\infty,-\frac{3}{2}\right]$
k) $[2 / 3, \infty)$
L) None of $F(, G), H), J$), and K).
(12-230B)
651) A way to look at a graph of a function and find its domain is to get all the m) y-values where horizontal lines through those values intersect the graph.
$\theta) x$-values where vertical lines through those values intersect the graph.
P) (x, y) pairs of the points where $y=x$ intersects p) the graph.
$R)$ None of M), θ), and p).
($12-230 B$)
652 A way to look at the graph of a function and find its range is to get all the
s) (x, y) pairs of the points where $y=x$ intersects the graph.
T) y-values where horizontal lines through those values intersect the graph
4) x-values where vertical lines through those values intersect the graph.
w) None of S), T), and U).
(12-23IT)
653 What is the domain for the function f at the right?
A) $[3,5]$
B) $[1,3]$
C) $[1,5]$

D) $[0,5]$
E) None of A) B), C), and D).
(12-231T)
(654) What is the range of the function at the right?
F) $[1,3]$
G) $[3,5]$
tl) $[1,5]$

J) $[0,5]$
K) None of F), G), H), and J).
(12-231 m)
(655) What is the domain of the function at the right?
L) $[-1,2)$
M) $[0,2)$
-) $(1,5]$
P) $(2,5]$
R) None of L, $M), \theta$) and P).
(12-231 M)
(656) What is the range of the function at the right?
s) $(2,5]$
T) $(1,5]$

U) $[-1,2)$
w) $[-1,1]$
X) $[-1,5]$
(12-232T)
657 The range for $f(x)=x^{2}-4 x+7$ is
(hint graph the function)
A) $(2,3)$
B) $[2,3]$
C) $[2, \infty)$
D) $[3, \infty)$
E) None of A),$B), C$), and D).
(12-232B)
658 To find the range of $f(x)=x^{2}-4 x+7$
the algebraic steps

$$
\begin{aligned}
& (x-2)^{2} \geq 0 \\
& (x-2)^{2}+3 \geq 0+3 \\
& x^{2}-4 x+4+3 \geq 3
\end{aligned}
$$

help reveal the range to be
F) $(-\infty, 3]$
G) $[7, \infty)$
H) $[3, \infty)$
J) $[0, \infty)$
K) None of $F(, G), H$), and J).
($12-233$ T) T_{0} find the range of $f(x)=\frac{2 x-1}{3 x-2}$, set $y=f(x)$, solve for x, and see the range to be
L) $\left\{y \left\lvert\, y \neq \frac{3}{2}\right.\right\}$
M) $\{y \mid y \neq 1 / 2\}$
-) $\{y \mid y \neq 2 / 3\}$
P) $\{y \mid y \neq 2\}$
R) None of L) M), θ), and P).
(12-233 T, M)
660 Let $y=\frac{2 x-1}{3 x-2}$. Solving for x gives $x=$
5) $\frac{2 y+1}{3 y-2}$
T) $\frac{2 y-1}{3 y+2}$
v) $\frac{2 y-1}{3 y-2}$
w) None of S), T), and U).
(12-236T)
$661 f(x)=3 x+1$ if $x \geq 2$

$$
\begin{array}{lll}
=-2 x+1 & \text { iF } x \geq 2 & f(3)= \\
=-2 x & \text { IF } x<2 &
\end{array}
$$

A) -6
B) 10
C) 7
D) None of $A(B)$, and C).
(12-236T)
$662 f(x)=3 x+1$ IF $x \geq 2$

$$
=-2 x \quad \text { IF } \quad x<2
$$

$$
f(-4)=
$$

E) -11
E) -13
6) -8
H) None of E), F), and G

L)

$$
\left.\begin{array}{rl}
\left\{\begin{aligned}
f(x) & =3 x+1 \\
& \text { IF } x \geq 2 \\
& =-2 x
\end{aligned}\right. & \text { iF } x<2
\end{array}\right\}
$$

664 At the right is the graph of a function f that was define piecewise.
What is the range of f ?
M) $(-\infty, \infty)$

Ө) $(2,7)$
P) $(-4, \infty)$
R) $(-4,7)$
S) $(7, \infty)$
$T)$ None of $M), \theta), P), R$), and S).
(12-238T)
665 Piece-wise defined function f :

$$
\left\{\begin{aligned}
f(x) & =x \\
& \text { if } x \geq 0 \\
& =-x
\end{aligned} \text { if } x<0, ~ f(-2)=\right.
$$

v) -2
w) 2
x) $-(-(-2))$
$z)$ None of $(v),(\omega), x)$, and z.
$(12-238,239 T)$
666) which of the graps below is the graph of the piece-wise defined function f?

$$
\left\{\begin{array}{cc}
f(x)=x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right\}
$$

A)

B)

c)

(12-2417)
(667) The graph of $y=-f(x)$ is the graph of $y=f(x)$ reflected about the
D) x-axis
E) $y-9 \times 15$
F) the line $y=x$
$G)$ None of D),E), and E).
(12-241B)
668 At the right is the graph of $y=\sqrt{x}$. Which of the graphs below is the
 graph of $y=-\sqrt{x}$?
H)

I)

Ј)

(12-242T)
(669) The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected about the
H) x-axis
J) y - $a \times 15$
k) line $y=x$
L) None of H), J), and K).
(12-242T)
(670) At the right is the graph of $y=\sqrt{x}$. Which
 of the graphs below is the graph of $y=\sqrt{-x}$?
M)

θ)
p)

(12-242B)
671 The graph of $y=\sqrt{x}$ is just the top half of the graph of
Q) $y=x^{2}$
R) $x=y^{2}$
S) $x^{2}+y^{2}=1$
T) $x^{2}=y^{2}$
U) None of Q), R), S), and T).
(12-243T)
672 The graph of $y=f(x)+2$ is the graph of $y=f(x)$
A) translated right 2
B) translated left 2
C) translated up 2
D) translated down 2
E) None of A) , B), C), and D)

12
$673)$
At the left is the
(12-243T)
graph of $y=f(x)$. At

F) $y=f(x-2)$
G) $y=f(x+2)$.
H) $y=f(x)+2$
J) $y=f(x)-2$
K) None of $F), G), H$), and J
(12-243B) At the left is the
674
4) $(y=f(x)$ graph of $y=f(x)$. At the right is the graph of
L) $y=f(x-2)$

M) $y=f(x)-2$

-) $y=f(x+2)$
P) $y=f(x)+2$
R) None of $(L), M), \theta)$, and P).
$(12-244 T)$
(675) $f(x)=2 x^{2}-3 x+4 . \quad f(x-h)=$

5) $2 x^{2}-3 x+4-h$
T) $2(x-h)^{2}-3 x+4$
U) $2(x-h)^{2}-3(x-h)+4$
w) $\left(2 x^{2}-3 x+4\right)(x-h)$
x) None of 5$), T), \cup 1$, and $w)$.
(12-244B)
676 $f(x-1)=5(x-1)^{3}-2 \sqrt{x-1}+2(x-1)$,
so $f(x)=$
A) $5 x^{3}-2 \sqrt{x}+2 x$
B) $(5 x)^{2}-2 \sqrt{x}+2$
C) $5 x^{3}-5^{3}-2 \sqrt{x}+2 \sqrt{1}+2 x-2$
D) None of A),$B)$, and C).
(12-244B)
677 At the right is the graph of $y=x^{2}$. Which of the graphs

E)

F)

G)

$H)$ None of E), F), and G).
(12-245M)
At the left is the graph
678
of $y=f(x)$. Translate
$y=f(x)$ The graph of $y=f(x)$ -xleft 1 (as shown at the right)
The graph at the right is the graph of
J.) $y=f(x)-1$
K) $y=f(x-1)$
L) $y=f(x+1)$.
M) None of (J), k), and L).

251
($12-245 B$)
(679) At the right, B ss the graph of $y=|x|$.
which is the graph of $y=\frac{1}{4}|x|$?

A) A
c) C
(12-246B)
(680) At the right is the graph of
D) $y=\frac{1}{2}(x+1)-3$
E) $y=\frac{1}{2}(x-1)+3$

F) $y=\frac{1}{2}(x-1)-3$
G) $y=\frac{1}{2}(x+1)+3$
$(12-246 \mathrm{M}, \mathrm{B})$
(681) Start with the graph of $y=x^{2}$. Which is the correct sequence to get the graph of $y=\frac{1}{2}(x-1)^{2}-3 ?$
H) COMPRESS, LEFT 1 , DOWN 3.
J) STRETCH, LEET 1, Down 3.
K) COMPRESS, RIGHT 1, DOWN 3.

4 STRETCH, RIGHT 1, UP 3
$(12-247)$
(682) The graph at the right is the graph of
m) $y=-2 \sqrt{x+1}+3$

ө) $y=-2 \sqrt{x-1}+3$

P) $y=-2 \sqrt{x-1}-3$
R) $y=-2 \sqrt{x+1}-3$
(12-249)
683 which of the following is an example of a rational function?
s) $f(x)=\frac{\sqrt{2 x-1}}{3 x+2}$
T) $f(x)=\frac{6 x-7}{3 x-3}$
v) $f(x)=\frac{5 x^{2}-7 x^{1 / 3}+2}{3 x^{\frac{1}{5}}-2}$
w) None of S), T), and U).
(12-249M)
(684) True or False: Every polynomial is a rational function.
T) True
F) False

253
(12-249B)
(685) The graph at the right is the graph of
A) $\frac{1}{x}+\frac{1}{y}=1$
B) $\frac{1}{x}-\frac{1}{y}=1$

C) $\frac{1}{x}=\frac{1}{y}$
D) $y=\frac{1}{x}$
E) None of $A(B), C$), and D)

$$
\ldots(12-250 \mathrm{~T})
$$

(686) Which of the following is the asymp tote equation for the graph at the right.

A) $x=2$
B) $y=2$
C) $y=2 x$
D) None of $A, B)$, and C).
(12-250M)
(687) Which of the following is the asymptote equation for the graph at the right
E) $x=-1$
F) $y=-1$
G) $y=-x$
H) None of E), F), and G).

$(12-250,251)^{254}$
$688 y=\frac{6 x-7}{3 x-3}$ is equivalent to the equation
J) $y=\frac{1}{3}\left(\frac{1}{x-1}\right)+2$
k) $y=\frac{1}{3}\left(\frac{1}{x-1}\right)-7$
L) $y=-\frac{1}{3}\left(\frac{1}{x-1}\right)-2$
M) $y=-\frac{1}{3}\left(\frac{L}{x-1}\right)+2$
O) None of $J, K), L$), and M)
(12-251B)
(689) The graph at the right is the graph of
p) $y=\frac{1}{3}\left(\frac{1}{x-1}\right)+2$

Q) $y=\frac{1}{3}\left(\frac{1}{x+1}\right)+2$
R) $y=-\frac{1}{3}\left(\frac{1}{x+1}\right)+2$
s) $y=-\frac{1}{3}\left(\frac{1}{x-1}\right)+2$
(12-252T)
690 What is the x-intercept for

$$
y=\frac{6 x-7}{3 x-3} ?
$$

T) $\left(0, \frac{7}{3}\right)$
v) $(7 / 6,0)$
w) $\left(\frac{7}{6}, \frac{7}{3}\right)$
x) None of τ), U), and ω)
(12-252B)
(691) The graph of f is symmetric about the y-axis if
A) $f(x)=-f(x)$
B) $f(x)=f(-x)$
C) $f(-x)=-f(x)$
D) $f(-x)=-f(-x)$
E) None of $A, B), C)$, and D)
(12-253T)
692) A function is an even function if its graph is symmetric about the
F) x-axis
G) y - $a \times 15$
H) origin
J) the line $y=x$
$(12-253 M)$
(693) If an equivalent equation results from substituting $-x$ for x in an equation, the graph is symmetric about the
K) x-axis
L) y-axis
M) origin
θ) the line $y=x$
P) None of $K, L), M$), and θ).
(12-253M)
694 Which equation below results from substituting $-x$ for x in $x^{2}+y^{2}=4$, and then simplifying.
Q) $y^{2}-x^{2}=4$
R) $\begin{aligned}-x^{2}+y^{2} & =4 \\ x^{2} & =4\end{aligned}$
S) $x^{2}+y^{2}=4$
S) None of Q),R) S), and T).
(695 If an equivalent equation results from substituting - y for y in an equation, the graph is symmetric about the
A) origin
B) $x-a \times 15$
C) $y-a \times 15$
D) the line $y=x$
E) None of A) , B), C), and D).
$(12-255 T)$
(696) True or False: The graph of $x=2 y+y^{4}$ is symmetric about the x-axis.
T) True
F) False
(12-255T)
697) True or False: The graph of $x=y^{2}$
is symmetric about the x-axis
T) True
F) False
(12-255B)
(698) The graph of f is symmetric about the origin if and only if
G) $f(x)=f(-x)$
H) $f(-x)=-f(x)$
I) $f(x)=-f(x)$
$J)$ None of $G), H$, and $I)$.
(12-256T)
699 True or False: $f(x)=x^{3}$, its graph is symmetric about the origin
T) True
F) False
(12-255B)
(200) A function is an odd function if 'its graph is symmetric about the
k) x-axis
L) y-axis
M) origin
©) the line $y=x$
D) None of these
(12-256T)
201 To check to see if the graph of an equation is symmetric about the origin see if an equivalent equation results by substituting
R) $-x$ for x
S) $-y$ for y
T) $-x$ for x and $-y$ for y
U) None of R) , S), T), and U).
(12-256B)
202 Is the graph of $2 y^{2}=x^{3}-x^{5}$ symmetric about the origin?
y) Yes
N) N_{0}
(12-258B)
(703) Solving $4 x^{2}+9 y^{2}=36$ for y^{2} gives
A) $\frac{36+4 x^{2}}{9}$
B) $\frac{36-9 x^{2}}{4}$
C) $\frac{36-4 x^{2}}{9}$
D) None of A), B), and C).
(12-258B,259T)
704 If $y^{2}=\frac{36-4 x^{2}}{9}$, then $|y|=\frac{2}{3}$
Fill in the blank with
E) $36-x^{2}$
F) $\sqrt{36-4 x^{2}}$
G) $\sqrt{9-x^{2}}$
H) $\sqrt{36-x^{2}}$
J) None of $E(, F), G)$, and H).
(12-259T)
705 The graph for $|y|=\frac{2}{3} \sqrt{9-x^{2}}$ only
exists when
k) $-2 / 3 \leq x \leq 2 / 3$
L) $-3 \leq x \leq 3$
m) $x \geq 3$ or $x \leq-3$
Q) $x \geq \frac{2}{3}$ or $x \leq-2 / 3$
p) None of $k),(1, M)$, and θ).
$(12-258 T, M)$
(706) $4 x^{2}+9 y^{2}=36$ is equivalent to the equation
Q) $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{3^{2}}=1$
R) $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$
5) $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$
T) None of Q), R), and S).
(12-258,259,260)
(707) The graph of $4 x^{2}+9 y^{2}=36$ is
U)

w)

x)

z) None of U), w), and X).
(12-260B)
(708) Which equation below is standard form for the ellipse $4 x^{2}+9 y^{2}=36$?
A) $\frac{(x-0)^{2}}{2^{2}}+\frac{(y-0)^{2}}{3^{2}}=1$
B) $\frac{(x-0)^{2}}{2^{2}}-\frac{(y-0)^{2}}{3^{2}}=1$
C) $\frac{(x-0)^{2}}{3^{2}}+\frac{(y-0)^{2}}{2^{2}}=1$
D) $\frac{(x-0)^{2}}{3^{2}}-\frac{(y-0)^{2}}{2^{2}}=1$
E) None of A), B), C), and D)
(12-260.1B)
(209) Which equation below is standard form for an ellipse centered at (h, k) ?
F) $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
G) $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
H) $\frac{(x+h)^{2}}{a^{2}}+\frac{(y+k)^{2}}{b^{2}}=1$
J) $\frac{(x-k)^{2}}{a^{2}}+\frac{(y-h)^{2}}{b^{2}}=1$
$K)$ None of $\left.\left.E^{\prime}, G\right), H\right)$, and J).
(12-260A; T)
(710) The major axis for the ellipse $\frac{(x-2)^{2}}{5^{2}}+\frac{(y-3)^{2}}{4^{2}}=1$ goes from
L) $(0,0)$ to $(5,0)$
M) $(0,0)$ to $(5,4)$
$\theta)(z, 3)$ to $(5,4)$
P) $(2,3)$ to $(5,7)$
R) $(-3,3)$ to $(7,3)$
5) None of L),$M), \theta), P$), and R).
$(12-260 A, T)$
711) The minor axis for the ellipse $\frac{(x-2)^{2}}{5^{2}}+\frac{(y-3)^{2}}{4^{2}}=1$ goes from
A) $(2,3)$ to $(2,7)$
B) $(2,3)$ to $(2,-1)$
C) $(0,0)$ to $(0,4)$
D) $(2,-1)$ to $(2,7)$
E) None of $A, B), C)$, and D)
(12-260 $1, B$)
712 The beginning steps to put $4 x^{2}+2 y^{2}+24 x-4 y+30=0$ into standard form for an ellipse are

$$
\begin{aligned}
& 4 x^{2}+24 x+2 y^{2}-4 y=-30 \\
& 4\left(x^{2}+6 x\right)+2\left(y^{2}-2 y\right)=-30
\end{aligned}
$$

What is the next line that completes the square inside the parentheses?
F) $4\left(x^{2}+6 x+36\right)+2\left(y^{2}-2 y+4\right)=-30$
G) $4\left(x^{2}+6 x+36\right)+2\left(y^{2}-2 y+4\right)=-30+144+8$
H) $4\left(x^{2}+6 x+9\right)+2\left(y^{2}-2 y+1\right)=-30+36+2$
J) $4\left(x^{2}+6 x+9\right)+2\left(y^{2}-2 y+1\right)=-30$
K) None of $F), 6), H)$, an (σ). $(12-260 B, T)$
(713) $4(x+3)^{2}+2(y-1)^{2}=8$ put in standard form
for an ellipse is
L) $\frac{(x-[-3])^{2}}{2^{2}}+\frac{(y-1)^{2}}{4^{2}}=1$
M) $\frac{(x-[-3])^{2}}{(\sqrt{2})^{2}}+\frac{(y-1)^{2}}{2^{2}}=1$

ө) $\frac{(x-[-3])^{2}}{2^{2}}+\frac{(y-1)^{2}}{(\sqrt{2})^{2}}=1$
P) None of L), M), and θ).
$(12-260 \mathrm{~B}, \mathrm{~B})$
714 The major axis for the ellipse $\frac{(x-[-3])^{2}}{(\sqrt{2})^{2}}+\frac{(y-1)^{2}}{2^{2}}=1$ goes from
Q) $(-3,-1)$ to $(-3,3)$
R) $(-3,1)$ to $(\sqrt{2}, 2)$
S) $(-3,1-\sqrt{2})$ to $(-3,1+\sqrt{2})$
T) $(-3-\sqrt{2}, 1)$ to $(-3+\sqrt{2}, 1)$
U) None of Q), R), S), and T).
(12-260B,B)
715 The minor axis for the ellipse $\frac{(x-[-3])^{2}}{(\sqrt{2})^{2}}+\frac{(y-1)^{2}}{2^{2}}=1$ goes from
A) $(-3,1)$ to $(\sqrt{2}, 2)$
B) $(-3-\sqrt{2}, 1)$ to $(-3+\sqrt{2}, 1)$
C) $(-3,-1)$ to $(-3,3)$
D) $(-3,1-\sqrt{2})$ to $(-3,1+\sqrt{2})$
E) None of A) , B) , C), and D).

265
(12-260c)
71 716) The st andard form for the equation of a hyperbola is
E) $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$
G) $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$
H) $\frac{(x-h)}{a}-\frac{(y-k)}{b}=1$
J) $(x-h)+(y-k)=a b$
K) None of F), G), H), and J).
(12-260C,M)
(717) The vertices for the hyperbola $\frac{x^{2}}{3^{2}}-\frac{y^{2}}{2^{2}}=1$ are
L) $(0,0)$ and $(3,2)$
M) $(0,0)$ and $\left(3^{2}, 2^{2}\right)$
$\theta)(0,2)$ and $(0,-2)$
P) $(0,3)$ and $(0,-3)$
R) None of L), M), θ), and P)
$(12-260 C, M)$
(78) The graph of $\frac{x^{2}}{3^{2}}-\frac{y^{2}}{2^{2}}=1$ is
s)

T)

W)

x) None of $(5), T),(u)$, and (ω).

$$
(12-260 C, B ; 260 D, T)
$$

(719) Beginning to put into standard form for a hyperbola can be as follows

$$
\begin{aligned}
& 9 y^{2}-4 x^{2}-16 x-18 y-43=0 \\
& 9 y^{2}-18 y-4 x^{2}-16 x=43
\end{aligned}
$$

What is a correct next step?
A) $9\left(y^{2}-18 y\right)-4\left(x^{2}-16 x\right)=43$
B) $9\left(y^{2}-2 y\right)-4\left(x^{2}-4 x\right)=43$
C) $9\left(y^{2}-2 y\right)-4\left(x^{2}+4 x\right)=43$
D) None of A), B), and C).
$(12-260 D, T)$
(220) Which is a correct next line that follows from

$$
9\left(y^{2}-2 y\right)-4\left(x^{2}+4 x\right)=43 ?
$$

E) $9\left(y^{2}-2 y+1\right)-4\left(x^{2}+4 x+4\right)=43+9-4$
F) $9\left(y^{2}-2 y+1\right)-4\left(x^{2}+4 x+4\right)=43+9+16$
G) $9\left(y^{2}-2 y+1\right)-4\left(x^{2}+4 x+4\right)=43+9-16$
H) $9\left(y^{2}-2 y+1\right)-4\left(x^{2}+4 x+4\right)=43$
J) $9\left(y^{2}-2 y+4\right)-4\left(x^{2}+4 x+16\right)=43+36-4(16)$
K) None of $E), F), G), H$), and J).
(12-260 D, M)
(721 $9(y-1)^{2}-4(x+2)^{2}=36$ put in standard form for a hyperbola is
L) $\frac{(y-1)^{2}}{3^{2}}-\frac{(x+2)^{2}}{2^{2}}=1$
M) $\frac{(y-1)^{2}}{2^{2}}-\frac{(x-[-2])^{2}}{3^{2}}=36$
e) $\frac{(y-1)^{2}}{2^{2}}-\frac{(x-[-2])^{2}}{3^{2}}=1$.
p) $\frac{(y-1)^{2}}{2^{2}}+\frac{(x-[-2])^{2}}{3^{2}}=1$
R) None of L), M),θ), and P).
$(12-260 E, T)$
722) The graph at the right is the graph for
5) $\frac{(y-1)^{2}}{2^{2}}-\frac{(x-[-2])^{2}}{3^{2}}=1$
T) $\frac{(x-[-2])^{2}}{3^{2}}-\frac{(y-1)^{2}}{2^{2}}=1$
v) $\frac{(x-[-2])^{2}}{3^{2}}+\frac{(y-1)^{2}}{2^{2}}=1$

w) None of S), T), and U).
$(12-260 \in, B)$
723 Ellipses, hyperbolas, and parabolas are called
A) Pythagorean triples
B) Conic Sections
C) Euclidean mainstays
D) Boolean Algebras
E) None of A),$B),()$, and D).
(1z-262t)
724 Which is the definition for $(f g)(x)$?
$(f g)(x)=$
F) $f(g(x))$
G) $g(f(x))$
H) $f(x) g(x)$
$J)$ None of F), G), and H).
(13-262M)
725 The domain for $f-g$ is
k) $\operatorname{dom}(f)-\operatorname{dom}(g)$
L) $\operatorname{dom}(f) \cap \operatorname{dom}(g)$
M) $\operatorname{dom}(f) \cup \operatorname{dom}(g)$

ө) $\{x \mid x \varepsilon \operatorname{dom}(f) \cap \operatorname{dom}(g)$ and $g(x) \neq 0\}$
p) None of $(k), L), M)$, and θ).
(13-262B)
726 The domain of $\frac{f}{g}$ is
Q) $\operatorname{dom}(f) \cap \operatorname{dom}(g)$
R) $\{x \mid x \varepsilon \operatorname{dom}(f) \cap \operatorname{dom}(g)$ and $g(x) \neq 0\}$
S) $\{x \mid x \varepsilon \operatorname{dom}(f) \cap \operatorname{dom}(g)$ and $f(x) \neq 0\}$
T) None of $Q), R)$, and S)
(13-263T)
727 Let f and g be functions defined by $f=\{(1,5),(2,6),(3,7)\}$ and $g=\{(2,8),(3,0),(4,9)\}$.
The product function $\mathrm{fg}=$
A) $\{(1,5),(2,48),(3,0),(4,9)\}$
B) $\{(2,48),(3,0)\}$
C) $\{(1,5),(2,6),(3,7),(2,8),(3,0),(4,9)\}$
D) None of A) , B), and C)
$(13-263 \mathrm{M})$
728 Let f and g be functions defined by
$f=\{(1,5),(2,6), 3,7)\}$ and $g=\{(2,8)(3,0),(4,9)\}$ $f=\{(1,5),(2,6),(3,7)\}$ and $g=\{(2,8),(3,0),(4,9)\}$.
The function $\frac{f}{g}=$
E). $\}$
F) $\left\{\left(1, \frac{5}{8}\right),\left(2, \frac{6}{8}\right),(3,0),(4,9)\right\}$
G) $\left\{\frac{6}{8}\right\}$
H) $\left\{\left(2, \frac{3}{4}\right)\right\}$
J) None of E, F), G), and H)
(13-264T)
(729) $f(x)=(x-2)^{3 / 2}$ and $g(x)=\frac{x-3}{x-2} \cdot \operatorname{dom}(f+g)=$
k) $[2, \infty)$
L) $(2, \infty)$
M) $\{x \mid x \neq 2\}$
θ) $(-\infty, 2)$
p) None of $K), L), M$), and θ)
(13-264M)
730) $f(x)=(x-2)^{3 / 2}$ and $g(x)=\frac{x-3}{x-2} .(f g)(x)=$
Q) $(x-2)^{1 / 2}(x-3)$
R) $(x-2)^{5 / 2}(x-3)$
5) $\frac{x-3}{(x-2)^{5 / 2}}$
T) $(x-3)(x-2)$
U) None of $Q(, R), 5)$, an (T).
$(13-265 T)$
(731) $f(x)=(x-2)^{3 / 2}$ an $g(x)=\frac{x-3}{x-2} \cdot\left(\frac{f}{g}\right)(x)=$
A) $(x-2)^{1 / 2}(x-3)$
B) $\frac{(x-2)}{(x-3)}$
C) $\frac{(x-2)^{5 / 2}}{x-3}$
D) None of A), B), and C)
(13-265B)
732 The definition for composition of function f and g is $(f \circ g)(x)=$
E) $f(x) g(x)$
E) $g(f(x))$
G) $f(g(x))$
H) $(f g)(x)$
$J)$ None of $E=(E), G)$, and H).
(13-265B)
233 The domain for the composition of two functions f and g is $\operatorname{dom}(f \circ g)=$
K) $\{x \mid x \in \operatorname{dom}(f)$ an $\theta x \varepsilon \operatorname{dom}(g)\}$
L) $\{x \mid x \varepsilon \operatorname{dom}(f)$ and $x \in \operatorname{dom}(g)$ and $g(x) \neq 0\}$
M) $\{x / x \varepsilon \operatorname{dom}(f)$ and $g(x) \varepsilon \operatorname{dom}(f)\}$
$\theta)\{x / x \varepsilon \operatorname{dom}(g)$ and $g(x) \varepsilon d o m(f)\}$
$p)$ None of $(k), L), M)$, and θ).
$(13-266 T)$
234) $f(x)=\sqrt{x}+2 x^{2}-7, g(x)=2 x-1 .(f \circ g)(x)=$
Q) $2 \sqrt{x}+4 x^{2}-15$
R) $\sqrt{2 x-1}+2(2 x-1)^{2}-7$
S) $\sqrt{2 x-1}+2 x^{2}-7$
T) $\left(\sqrt{x}+2 x^{2}-7\right)(2 x-1)$
$0)$ None of $Q), R), S)$, and T)
$(13-266)^{273}$
(735) $f(x)=\sqrt{x}+2 x^{2}-7, g(x)=2 x-1 .(g \circ f)(x)=$
A) $2 \sqrt{x}+4 x^{2}-15$
B) $\sqrt{2 x-1}+2(2 x-1)^{2}-7$
C) $\sqrt{2 x-1}+2 x^{2}-7$
D) $2 \sqrt{x}+4 x^{2}-1$
E) None of A) , B), C), and D).
($13-266 m$)
736) $f(x)=\sqrt{x}+2 x^{2}-7, g(x)=2 x-1 . \operatorname{dom}(f \circ g)=$
F) $(-\infty, \infty)$
G) $\{x \mid x \neq 1 / 2\}$
H) $[0, \infty)$
J) $\left[\frac{1}{2}, \infty\right)$
k) None of $F), G), H$, and J).
$(13-267 T)$
737 Composition of functions: $($ how $)(2)=$
L) $h(2) w(2)$
M) $h(w(2))$
$\theta) \quad \omega(h(2))$
p) $(w h)(2)$
R) None of ()$, M), \theta$, and p)
$(13-268 T)$
738 $h(x)=2 \sqrt{x}-4 x^{3}+21, \omega(x)=3 x+2$. (how) $(x)=$
5) $3\left(2 \sqrt{x}-4 x^{3}+21\right)+2$
T) $2 \sqrt{3 x+2}-4 x^{3}+21$
U) $2 \sqrt{3 x+2}-4(3 x+2)_{3}^{3}+21$
(1) $2 \sqrt{3 x+2}-4(3 x+2)^{3}+2$
$x)$ None of $S), T), U)$, and ω).
(13-268M)
$739) h(x)=2 \sqrt{x}-4 x^{3}+21, \omega(x)=3 x+2$. (how) $(1)=$
A) $\left(2 \sqrt{1}+4\left(1^{3}\right)+21\right)(3(1)+2)$
B) $3\left(2 \sqrt{1}+4\left(1^{3}\right)+21\right)+2$
C) $2 \sqrt{5}-4\left(5^{3}\right)+21$
D) $2 \sqrt{5}-4\left(1^{3}\right)+2$
$E)$ None of $A(B),()$, and $D)$.
($13-268 B$)
740 is the composition of two functions f and g such that $H(x)=(f \circ g)(x)$, where f and g are
F) $f(x)=x-3$ and $g(x)=\sqrt{x}$
G) $f(x)=\sqrt{x}$ and $g(x)=x-3$
H) $f(x)=\sqrt{x}-3$ and $g(x)=x$
J) $f(x)=x$ and $g(x)=\sqrt{x}-3$
$k)$ None of $F), G), H$), and J.
$(13-269 T)$
$741 H(x)=5(x-3)^{2}+(x-3)^{1 / 3}+2$ is the composition of two functions fond g such that $H(x)=(f \circ g)(x)$, where f and g are
L) $f(x)=5 x^{2}+x^{1 / 3}+2$ and $g(x)=x-3$
M) $f(x)=x-3$ and $g(x)=5 x^{2}+x^{1 / 3}+2$

ө) $f(x)=5(x-3)^{2}+x^{1 / 3}+2$ and $g(x)=x$
p) $f(x)=5(x-3)^{2}$ and $g(x)=(x-3)^{1 / 3}+2$
R) None of L), M),θ), and p)
(13-269B)
742 Let f and g be functions such that $f=\{(1,7),(2,6),(3,8)\}$ and $g=\{(5,2),(9,3),(4,10)\}$.
$f \circ g=$
5) $\{(1,2),(2,3),(3,10)\}$
T) $\{(2,5),(3,9),(4,10)\}$
U) $\{(5,6),(9,8)\}$
w) None of 5),T, and U)
(13-271T)
743 For the function f, f inverse, denoted $f^{-1}=$
A) $\left\{\left.\frac{1}{f(x)} \right\rvert\, x \in \operatorname{dom}(f)\right\}$
B) $\{(y, x) \mid(x, y) \varepsilon f\}$
C) $\left\{\left.\left(\frac{1}{x}, \frac{1}{y}\right) \right\rvert\,(x, y) \varepsilon f\right\}$
D) None of A), B), and C)
(13-271 M)
744 Let $f=\{(1,3),(2,6)\} \quad f^{-1}(6)=$
E) $\frac{1}{2}$
F) 3
G) 2
H) None of E) F), and G).
($13-271 \mathrm{M}$)
745 Let $f=\{(1,3),(2,6)\} . \quad f\left(f^{-1}(3)\right)=$
J) 3
K) 1
L) 2
M) 6
θ) None of J), K),L), and M).
(13-271B)
746 Suppose h is a function such that h^{-1} is a function and $h^{-1}(3)=2$. which of the ones below is true?
P) $2 \varepsilon h$
Q) $2 \varepsilon h^{-1}$
R) $(2,3) \varepsilon h$
S) $(2,3) \varepsilon h^{-1}$
T) None of $P(, Q), R$), and S,

277
(13-272M)
747 For $f=\{(7,5),(8,-)\}$ what is the blank filled in with so that f inverse is not a function?
u) 7
w) 6
x) 5
z) None of $(u),(u)$, and x).
($13-272 B$)
748 The function f is one-to-one if and only if
no two ordered pairs no two ordered pairs
A) have the same first term.
B) have the same second term.
C) None of A) and B).
(13-272B)
749 For $f=\{(1,3),(2,-)\}$, what is the blank filled in with so that f is one-toone?
D) 6
E) 3
F) None of D) and E).
($13-2728$)
750 True or False: $f=\{(7,5),(8,5)\}$ is one-to-one.
T) True
F) False
(13-273T)
(751) True or False: For one-to-one functions f f^{-1} is a function.
T) True
F) False
(13-273T)
752 For the function f, which of the following means the same thing as f is one-To-one?
G) f is invertible.
H.) f is even
J) f is symmetric
K) None of $(G), H$) and J).
(13-273m)
753 The function f is 1-1 if and only if
L) No verticle line intersects the graph of f twice.
M) No horizontal line intersects the graph of f twice.
$\theta)$ The line $y=x$ does not intersect the graph of f twice
P) None of L), M), and θ).
(13-273)
(754) At the right is the graph of $y=x^{2}$ (ie. $f(x)=x^{2}$). Is f one-to-one?
y) Yes
N) No

(13-274T)
(755) For the $1-1$ function $f(x)=2 x+1$,

$$
f(2)=2(2)+1 . \quad f^{-1}(5)=
$$

Q) 1
R) 4
S) 5
T) 2
U) None of $Q(R), S)$, $, n, T$).
(13-274 m, B;2757)
(756) Let $f(x)=2 x+1$. The formula for $f^{-1}(x)$ is $f^{-1}(x)=$
A) $\frac{1}{2 x+1}$.
B) $2\left(\frac{1}{x}\right)+1$
C) $\frac{x-1}{2}$
D) $2 x+1$
E) None of A) , B) , (), and D).
(13-275B)
757 Let $f(x)=x^{2}-6 x+11 \quad x<3$.
f is $1-1$. The formula for $f^{-1}(x)$ is $f^{-1}(x)=$
F) $(x-3)^{2}+2$
G) $-\sqrt{x-2}+3$
H) $\sqrt{x-2}+3$
J) $\sqrt{x-2}$
K) None of E) , G), H), and J).

$$
(13-276 B)
$$

(758) The graphs of f and f^{-1} are mirror reflections about the line
L) $y=x$
M) x - $a \times 1 s$
P) y-axis
Q) None of L), M), and P)
$(13-276 B)$
759 At the right is the graph of f. which below is the graph of f^{-1} ?
R)

5)

$T)$

(14-278T)
(760) The number e approximated to one decimal place is
U) 2.7
w) 3.14
x) $22 / 7$
$z)$ None of u) (ω), and x).
(14-278B)
(761) Which of the graphs below is the graph of $f(x)=2^{x}$
A)

B)

c)

D)

(14-279T)
(762) The graph at the right is the graph of $f(x)=$
E) 2^{x}
F) e^{x}
G) $\left(\frac{1}{2}\right)^{x}$
H) x^{2}

(14-279m)
(763) The graphs of $f(x)=\left(\frac{1}{2}\right)^{x}$ and $g(x)=2^{x}$ are reflections of each other about
$J)$ the x-axis
k) the y-axis
L) the line $y=x$
$M)$ None of J), k), and L).
(14-280T)
(764) The graph of $y=2^{x-3}$ is the graph of $y=2^{x}$ translated
N) up 3
θ) down 3
P) right 3
R) left 3
(14-280T)
(765) The graph of $y=2^{x-3}+4$ is the graph of $y=2^{x-3}$ translated
5) up 4
T) down 4
u) Left 4
w) right 4
(14-280m)
A) $x=2$
B) $y=3$
C) $x=4$
D) $y=4$
E) $y=2$
F) None of A) , B), C), D), and E).
($14-280 \mathrm{~m}$)
767 The graph at the right is the graph for
G) $y=2^{x+3}+4$
H) $y=2^{x+3}-4$
J) $y=2^{x-3}-4$

k) $y=2^{x-3}+4$
(14-281T)
(768) The graph of $y=e^{x+3}$ is the graph of $y=e^{x}$ translated
L) up 3
M) down 3
θ) left 3
P) right 3
(14-281m)
(769) The graph of $y=e^{-x+3}$ is the graph of $y=e^{x+3}$ reflected about the
Q) x - $a x i s$
R) y-axis
S) the line $y=x$
$\tau)$ None of Q), R), and S).
(14-281B)
(770) What line is an asymptote for $y=e^{3-x}-2$?
A) $x=2$
B) $x=-2$
C) $x=3$
D) $y=2$
E) $y=-3$
F) None of A),$B), C$), D), and E)
(14-28im)
(771) The graph at the right is the
graph for graph for
G) $y=e^{3-x}-2$
H) $y=e^{3+x}-2$
J) $y=e^{3+x}+2$
k) $y=e^{3-x}+2$

$(14-283 T)$
(772) $\log _{a} x=y$ if and only if
L) $a^{x}=y$
M) $y^{x}=a$
Q) $x^{y}=a$
P) $a^{y}=x$
R) None of L) M),θ, and P).
$(14-283 \mathrm{~m})$
(773) $\log _{3} 9=$
5) $\frac{1}{2}$
T) 2
U) 3^{2}
w) q^{3}
$x)$ None of 5$), T),(U)$, and ω).
$(14-283 B)$
(774) $\log _{3} \frac{1}{9}=$
A) 2
B) 3^{2}
C) -2
D) 3^{-2}
E) None of A) , B) , C), and D)
(14-284T)
(725) $\log _{5} \square=3$ so $\square=$
F) 3^{5}
G) 125
H) 5^{-3}
J) None of F), G), and H)
(14-284M)
776 For $a>0, \log _{a} 1=$
k) a^{\prime}
L) 1^{a}
M) $\frac{1}{a}$
θ) 0
p) None of $(K), L), M$), and θ)
(14-284B)
(777) A common log is a log to the base Q) e
R) 10
S) 1
T) 0
U) None of $(Q), R), S)$, an θ).
(14-284B)
$778 \log 100=$
A) 2
B) 10
C) 10^{2}
D) 2^{10}
E) None of $A(B), C)$, and D).
(14-285T)
(779) A natural log is a log to the base
F) e
G) 10
H) 1
J) 0
K) None of $F), G), H$), and J).
$(14-285 T)$
(780) $\ln e=$
L) e^{1}
m) 0

ө) 2.7
P) 1
R) None of $(L), m), \theta)$, and P).
(14-285m)
781 ln $e^{2}=$
s) 2
T) 10^{e}
v) e^{2}
w) 1
x) None of S), T), v), and (ω).
$(14-285 \mathrm{~m})$
782) $\ln \frac{1}{e}=$
A) $-e$
B) -1
C) e^{-1}
D) 10^{-e}
E) None of $A(B),()$, and $D)$
$(14-286 T)$
(783) What is exponential form for $\log _{3} 9=2$?
F) $2^{3}=9$
G) $9^{2}=3$
H) $3^{-2}=9$
I) $3^{2}=\frac{1}{9}$
J) None of $F), G(, H), \operatorname{an} \theta$ I)
$(14-286 T)$
(784) What is the \log form for $10^{2}=100$?
k) $\log _{100} 10=2$
L) $\log _{2} 100=10$
m) $\log 100=2$
Q) $\log 2=100$
p) None of $k), L), M$), and θ).
$(14-286 t)$
785 What is the logarithmic form
for $e^{-1}=\frac{1}{e}$?
Q) $\log \frac{1}{e}=-1$
R) $\ln \frac{1}{e}=-1$
5) $\ln -1=\frac{1}{e}$
T) $\ln \frac{1}{e}=e^{-1}$
U) None of Q) , R) , S), and T).
$(14-286 M)$
(786) What is the \log form for $5^{3}=125$?
A) $\log _{5} 125=3$
B) $\log _{3} 125=5$
C) $\log _{125} 3=5$
D) $\log _{5} 3=125$
E) None of A) , B), C), and D).
$(14-286 M)$
(787) What is the logarithmic form for $2^{-3}=\frac{1}{8}$?
F) $\log -3=\frac{1}{8}$
G) $\log _{2} 3=-\frac{1}{8}$
H) $\log _{3}-2=\frac{1}{8}$
J) $\log _{3} \frac{1}{8}=-2$
k) None of F), 6), H), and J)
(14-286B)
788) What is exponential form for $\log 2 z=x$?
L) $10^{2 z}=x$
m) $10^{x}=2 z$
θ) $e^{x}=2 z$
p) $e^{2 z}=x$
R) None of L), M) , θ), and P).
(14-286B)
(789) The logarithmic form for $5^{2 x}=m$ is
5) $\log _{5} 2 x=m$
T) $\log _{5} m=2 x$
v) $\log _{m} 2 x=5$
w) $\log _{m} 5=2 x$
x) None of $(S), \tau), U)$, and $\omega)$.
(14-288T)
(790) What type of function is the inverse of a \log function?
A) polynomial function
B) rational function
C) exponential function
D) quadratic function.
E) None of A), B), C), and D).
(14-288B)
(791) The domain of $\log _{2}$ is
F) $(-\infty, \infty)$
G) $(-\infty, 0)$
H) $(0, \infty)$
J) $(1, \infty)$
K) None of $F), G), H)$, and J).
(14-288B)
(792) The range of $\log _{2}$ is
L) $(-\infty, \infty)$
M) $(-\infty, 0)$

ө) $(0, \infty)$
p) $(1, \infty)$
R) None of L), M) θ), and P).
$(14-289 T)$
793 The graph at the right is the graph for
5) $y=e^{x}$
T) $y=e^{2}$
v) $y=\log _{2} x$
w) $y=x^{2}$
(14-289B)
(794) The graph of $y=\log (x+2)$ is the graph of $y=\log (x)$ translated
A) up 2
B) down 2
C) Might 2
D) Left 2
(14-289B)
(795) What line is an asymptote for $y=(\log (x+2))+1 ?$
E) x-axis
F) y-axis
G) $x=2$
H) $x=-2$
J) $y=1$
K) None of $E(F), G), H$, and J).
(796) What is the domain for $h(x)=\log _{2}\left(x^{2}-9\right)$?
L) $(-3,3)$
M) $(3, \infty)$
$\theta)(-\infty,-3)$
p) $(-\infty,-3) \cup(3, \infty)$
R) None of L), M), θ), and P)
$(14-290)$
(797) $h(x)=\log _{2}\left(x^{2}-9\right)$ is the composition of
two functions, fond g where $h(x)=(f \circ g)(x)$ and
5) $f(x)=x^{2}-9$ and $g(x)=\log _{2} x$
T) $f(x)=\log _{2} x^{2}$ and $g(x)=x-9$
v) $f(x)=\log _{2} x$ and $g(x)=x^{2}-9$
w) $f(x)=\log _{2} x^{2}$ and $g(x)=x^{2}-9$
$x)$ None of $S), T), U$), and ω).
$(14-291 T)$
798) $\log M N=$
A) $(\log M)(\log N)$
B) $\log M+\log N$
C) $\log M^{N}$
D) $\log N^{m}$
E) None of A, $B), C)$, and D)
$(14-291 T)$
(799) $\log _{2} 5 x y=$
F) $\log _{2} 5+\log _{2} x+\log _{2} y$
G) $\left(\log _{2} 5\right)\left(\log _{2} x\right)\left(\log _{2} y\right)$
H) $\log _{2} x y^{5}$
J) $5 \log _{2} x y$
K) None of F),$G), H$), and J).
$(14-291 T)$
$800 \log 10 x=$
L) $(\log 10)(\log x)$
M) $1+\log x$
Q) $1+\log 10$
p) $\log 10^{x}$
R) None of $(L), M), \theta)$, an θP)

295
(14 -291B)
(801) $M \cdot N=10^{x+y}$ is the exponential form.

The log form is
5) $\log _{10} x+y=M N$
T) $\log _{m N} 10=x+y$
v) $\log _{10} M N=x+y$
w) $\ln M N=x+y$
x) None of S), T), $(u$, and (ω).
(14-292T)
(802) $\log \left(\frac{M}{N}\right)=$
A) $\log m-\log N$
B) $\frac{\log M}{\log N}$
C) $M \log N$
D) $N \log M$
E) None of A) , B) , C), and D)
(14-292T)
(803) $\log _{2} \frac{1}{8}=$
F) $\log 2-\log 8$
G) -3
H) 3
J) $\frac{\log _{2} 1}{\log _{2} 8}$
k) None of $\log _{2} 8$ (G) , H), and J.
$(14-292 m)$
(804) $\log _{2} \frac{x y}{5}=$
L) $\log _{2} x-\log _{2} y-\log _{2} 5$
m) $\frac{1}{5} \log _{2} x y$
e) $\log _{2} x+\log _{2} y-\log _{2} 5$
P) $\frac{\left(\log _{2} x+\log _{2} y\right)}{\log _{2} 5}$
R) None of L) , M),θ) and P).
(14-292M)
$805 \ln \frac{(x+1)}{y z}=$
5) $\ln (x+1)-\ln y-\ln z$
T) $\ln x+\ln 1-\ln y-\ln z$
v) $\frac{\ln (x+1)}{\ln y z}$
w) None of s), T), and U)
$(14-292 B)$
(806) Written as a single log, $\ln 3-\ln y=$
A) $\frac{\ln 3}{\ln y}$
B) $\ln 3 y$
C) $\ln \frac{3}{y}$
D) None of A), B), and C).
(14-292B) WRITE AS A SINGLE LOG
(807) $\ln 2-\ln x+\ln z-\ln \omega=$
E) $\ln \frac{2 x}{z \omega}$
F) $\ln \frac{2 z}{x w}$
6) $\ln \frac{20}{x z}$
H) $\frac{\ln 2 z}{\ln x \omega}$
J) None of $E(F), G)$, and H).
(14-293T)
(808) $\log M^{N}=$
k) $N \log M$
L) $M \log N$
M) $(\log N)(\log M)$
$\theta)$ None of K), L), and M)
$(14-293 T)$
809 True or False: $\log M^{N}=(\log M)^{N}$.
True
F) False

$$
(14-293 T)
$$

810) True or False: $\log M^{N}=\log \left(M^{N}\right)$
T) True
F) False
$(14-293 T)$
(811) $\log 10^{x}=$
p) 1
Q) x
R) $10 \log x$
S) $\log _{10} x$
T) None of $P(, Q), R)$, and S).
$8^{(1214-293 T)} \log \sqrt{x}=$
v) $2 \log x$
w) $\frac{1}{2} \log x$
x) $x \log 2$
$z)$ None of $U \mid(w)$, and $x)$.
(813) $\ln \left(\frac{(14-293 M)}{e}\right)=$
A) $\frac{1}{3}(\ln x+\ln y)-1$
B) $\frac{1}{3} \ln x+\ln y-\ln e$
C) $\frac{1}{3} \ln x \ln y-\ln e$
D) $3 \ln x+3 \ln y-\ln e$
E) None of A) , B) , C), and D).
$(14-293 B)$
(814) The exponential form is $10^{N x}=M^{N}$. The \log form is
F) $\log _{10} N x=M^{N}$
G) $\log _{10} N x=N M$
811) $\log _{10} M^{N}=N x$
J) $N \log _{10} M^{N}=M$
K) Nome of $F(, G), H)$, and J).
$(14-294 T)$
(815) $\log _{2} 2^{x}=$
812) 2^{x}
m) $2 \log _{2} x$
o) x
p) 2
R) None of $(L), M), \theta)$, and P).
$(14-294 T)$
(816) $\ln e^{x}=$
813) $e \ln x$
T) e^{x}
U) x^{e}
x) x
Z) None of S), T), U), and X).
$(14-294 \tau)$
(817) $\log 10^{x^{2}+1}=$
A) 10
B) $x^{2}+1$
C) $\log \left(x^{2}+1\right)$
D) $10 \log \left(x^{2}+1\right)$
E) None of $A, B), C)$, and D).
$(14-294 \mathrm{M})$
(818) $2^{\log _{2} x}=$
F) x
G) 2
H) $2 \log _{2} x$
J) $\log _{2} x^{2}$
K) None of $F(, G), H$), and J).
(14-294m)
(819) $10^{\log 5 x}=$
L) 10
M) $\log 5 x$
e) $5 x$
P) $5 x \log 10^{x}$
R) None of L),M),θ), and P
(14-294m)
$820 e^{\ln \square}=$
814) $\ln \square$
T) e^{\square}

ט) \square
w) $\square \ln \square$
x) None of $S), T), U$), and ω).
$(14-294 m)$
(821) $e^{\ln \left(x^{2}+1\right)}=$
A) $\ln \left(x^{2}+1\right)$
B) $e^{x^{2}+1}$
C) $x^{2}+1$
D) x^{2}
E) None of $A), B), C)$, and D)
(14-294T)
(822) Base change formula: $\log _{a} M=$
F) $\frac{\log _{m} a}{\log _{b} a}$
G) $\frac{\log _{b} M}{\log _{b} a}$
H) $\frac{\log _{b} a}{\log _{b} M}$
$J)$ None of $F), G$, and H).
$(14-295 T)$
(823) $\log _{7} x=$
k) $\frac{\log _{2} x}{\log _{2} 7}$
L) $\frac{\log _{2} 7}{\log _{2} x}$
M) $\frac{\log _{7} 2}{\log _{2} x}$
θ) None of K), L), aind M).
(14-295m)
(824) $\log _{7} x=$
P) $\frac{\ln 7}{\ln x}$
Q) $\frac{\ln 7}{\log x}$
R) $\frac{\ln x}{\ln 7}$
5) $\frac{\log x}{\ln 7}$
T) None of $(P), Q), R)$, and S).
$(14-295 B)$
(825) Given $7^{y}=x$. Take $\log _{2}$ of both sides.

This will eventually yield
A) $y \log _{2} 7=\log _{2} x$
B) $y \log _{2} x=\log _{2} 7$
C) $y \log _{7} x=\log _{2} 2$
D) None of A) , B), and C).
(14-296T)
(826) $\ln \frac{\sqrt{x y}}{e^{2} z}=$
E) $\frac{1}{2} \ln x-\frac{1}{2} \ln y-2 \ln e+\ln z$
F) $\frac{1}{2} \ln x-\frac{1}{2} \ln y+2 \ln e+\ln z$
6) $\frac{1}{2} \ln x+\frac{1}{2} \ln y-2 \ln e+\ln z$
H) $\frac{1}{2} \ln x+\frac{1}{2} \ln y-2 \ln e-\ln z$
(14-296B) WRITE AS A SINGLE LOG.
(827) $2 \log x^{3}-5 \log \left(x^{2}+1\right)+\frac{1}{2} \log \left(x^{4}+1\right)=$
J) $\log \frac{x^{5} \sqrt{x^{4}+1}}{5\left(x^{2}+1\right)}$
k) $\log \frac{x^{6} \sqrt{x^{4}+1}}{\left(x^{2}+1\right)^{5}}$
L) $\log \frac{x^{6} \sqrt[4]{x^{2}+1}}{\left(x^{2}+1\right)^{5}}$
M) None of J, K), and L).
(14-297)
(828) Solving $2^{3 x-1}=7^{x}$ for x gives $x=$
N) $\ln \left(\frac{2}{\frac{8}{7}}\right)$
o) $\ln \left(\frac{8 / 4}{2}\right)$
p) $\frac{\ln 8 / 7}{\ln 2}$
R) $\frac{\ln 2}{\ln 8 / n}$
s) None of N) θ),P), and R).
(14-297T)
829 True or False: if $\ln 2^{3 x-1}=\ln 7^{x}$, then $3 x-1 \ln 2=x \ln 7$.
T) True
F) False
(14-297T)
830 True or False: if $\ln 2^{3 x-1}=\ln 7^{x}$, then $(3 x-1) \ln 2=x \ln 7$.
T) True
F) False
(14-297m)
(831) If $(3 x-1) \ln 2=x \ln 7$, then which of the following is true?
T) $3 x \ln 2-1=x \ln 7$
u) $3 x \ln 2-\ln 2=x \ln 7$
w) $(3 x \ln -\ln) 2=x \ln 7$
x) $3(x-1) \ln 2=x \ln 7$
$z)$ None of $T), U),(\omega)$, and X).
(14-297m)
(832) If $3 x \ln 2-\ln 2=x \ln 7$, then which of the following is true?
A) $x(3 \ln 2-\ln 2)=x \ln 7$
B) $x(3 \ln 2+\ln 7)=\ln 2$
C) $x(3 \ln 2-\ln 7)=\ln 2$
D) $x(3 \ln 2-\ln 7)=-\ln 2$
E) None of $A), B), C)$, and D)
($14-297 B$)
(833) True or False: If $x \ln \frac{8}{7}=\ln 2$, then

$$
x=\ln \left(\frac{2}{\frac{8}{7}}\right)
$$

T) True
F) False
$(14-297 \mathrm{~m})$
(834) If $x(3 \ln 2-\ln 7)=\ln 2$, then which of the following is true?
F) $x \ln \frac{8}{7}=\ln 2$
G) $\times \frac{\ln 8}{\ln 7}=\ln 2$
H) $\times \ln \frac{q}{7}=\ln 2$
J) $x \ln \frac{6}{7}=\ln 2$
k) None of F) , G), H), and J).
$(15-301 T, m)$
835 To perform $\frac{2 x^{3}-5 x^{2}+4 x-8}{x-3}$ by synthetic division, which is the proper beginning setup?
4) $-3 \mid 2 \quad-5 \quad 4-8$
m) $-3-2+5-4+8$

ө) $312-5+4-8$
p) $3-2+5-4+8$
R) None of L), M), θ), and P).
(15-301m)
(836) When performing synthetic division for $\frac{2 x^{3}-5 x^{2}+4 x-8}{x-3}$ what is the \square below filled in with?

$$
3 \quad 2 \quad-5 \quad 4 \quad-8
$$

s) 0
T) 3
v) -33
w) 33
x) None of $S), T), U$), and (ω).
(15-301B)
(837) When the synthetic division

3) $2-5 \quad 4-8$ is performed, which | | 6 | 3 |
| :--- | :--- | :--- |
| 2 | 1 | 7 |

A) $\frac{2 x^{4}-5 x^{3}+4 x^{2}-8 x}{x+3}=\frac{2 x^{2}+1 x+7}{x+3}+13$
B) $\frac{2 x^{3}-5 x^{2}+4 x-8}{x-3}=2 x^{2}+1 x+7+\frac{13}{x-3}$
C) $\frac{2 x^{3}-5 x^{2}+4 x-8}{x+3}=2 x^{2}+1 x+7+\frac{13}{x-3}$
D) None of A, B), and C)
(15-301 M)
838 What is the remainder when $2 x^{3}-5 x^{2}+4 x-8$ is divided by $x-3$?
(A way is to do synthetic division.)
E) 13
F) -13
G) 29
H) -29
J) None of $E(, F), G 1$, and H).
(15-302T)
839) When performing synthetic division for $\frac{-4 x^{3}+15 x+4}{x+2}$ which below is the beginning set up?
k) $21-4 \quad 15 \quad 4$
L) $2-40 \quad 154$
M) $-2 \quad-4 \quad 15 \quad 4$
0) $-21-4 \quad 0 \quad 15 \quad 4$
P) None of $K), L), M$), and θ).
(15-302M)
(840) What is the remainder when $-4 x^{3}+15 x+4$ is divided by $x+2$? (A way is to do synthetic division)
Q) 66
R) -66
5) 6
T) -6
U) None of Q), R), S), an (Q)

$$
(15-302 B)
$$

841 For the synthetic division 311-1-6 the O remainder means $\begin{array}{r}311-1-6 \\ 3 \quad 6 \\ \hline 1210\end{array}$
A) $3 x+6$ is a factor of $x^{2}-x-6$.
B) $x+3$ is a factor of $x^{2}-x-6$.
C) $x-3$ is a factor of $x^{2}-x-6$.
D) $x-3$ is a factor of $x+2$.
E) None of these.
(15-302M)
(842) When doing synthetic division, as set up below, what number is the box filled in with?
F) 16
G) -16

$$
-21-4 \quad 0 \quad 15 \quad 4
$$

H) 3
J) 49
K) None of $F(, G), H)$, and J).
$(15-303 T)$
843 $\frac{8 x^{3}-27}{2 x-3}=\frac{T}{\left(x-\frac{3}{2}\right)}$. What is T equal to?
(Hint: Factor 2 out of the denominator)
L) $4 x^{3}-\frac{27}{2}$
m) $4 x^{3}-27$
e) $4 x^{3}-54$
P) $16 x^{3}-54$
R) None of L) M),θ), and P).
(15-303T)
(844) What is the beginning setup to do synthetic
division for $4 x^{3}$ 2 division for $\frac{4 x^{3}-\frac{27}{2}}{x-\frac{3}{2}}$?
5) $\left.-\frac{3}{2}\right] 4-\frac{27}{2}$
7) $\frac{-3}{2} 40-\frac{27}{2}$
U) $\frac{3}{2}$ 4 $\frac{-27}{2}$
w) $\frac{3}{2} 40-\frac{27}{2}$
$x)$ None of $(S), T), U$, and ω).
(15-303 M)
845 What is the answer when $8 x^{3}-27$ is divided by $2 x-3$?
A) $4 x^{2}-9$
B) $4 x^{2}+9$
C) $4 x^{2}-6 x+9$
D) $4 x^{2}+6 x+9$
E) None of A) , B) , C), and D).
(15-303B)
(846) According to the remainder theorem, if $f(x)$ is a polynomial, then
F) $f(c)$ is the remainder when you divide by $x+c$.
G) $x-c$ is the remainder when you divide by c.
H) $x-f(c)$ is the remainder when you divide by $x-c$
J) $f(c)$ is the remainder when you divide by $x-c$.
K) None of $F(, G),(H)$, and J).
(15-304B)
$847 \mathrm{f}(\mathrm{x})=2 x^{5}-25 x^{4}+11 x^{3}+14 x^{2}-26 x+30$ 。
Consider the synthetic division below:
\(\left.\left.\begin{array}{cccccc}12 \& 2 \& -25 \& 11 \& 14 \& -26

30

24 \& -12 \& -12 \& 24 \& -24

\hline 2 \& -1 \& -1 \& 2 \& -2 \& 6\end{array}\right\} $$
\begin{array}{c}6\end{array}
$$\right\}\)| This involves |
| :---: |
| $f(x)$ |

$f(12)=$
L) 24
M) -1
e) 2
P) -2
R) 6
S) None of $(L), M), \theta), P)$, and R.
$(15-305 T)$
(848) According to the factor theorem, if
$f(x)$ is a polynomial, then
T) $x-c$ is a factor of $f(x)$ if $f(c)=0$.
U) $x+c$ is a factor of $f(x)$ iff $f(c)=0$.
w) c is a factor of $f(x)$ iff $f(c)=0$.
x) $-c$ is a factor of $f(x)$ iff $f(c)=0$.
z) None of $T), v), \omega$), and X).
(15-305B)
(849) True or False: $x-1$ is a factor of $x^{6}-1$.
T) True
F) False
(850) True or False: $x+1$ is a factor of $x^{10}+1$.
T) True
F) False

$$
(15-306 B)
$$

(851) True or False: All positive degree polynomials can be broken down into a product of linear factors over the complex numbers.
T) True
F) False

$$
(16-309 B)
$$

(852) For a system of 2 linear equations in' 2 unknowns, if the lines that are their graphs intersect in exactly one point, then the linear system is
A) dependent
B) independent
C) inconsistent
D) Conjugated
E) None of $A, B), C)$, and D).
(16-309B)
(853) True or False: A dependent system of linear equations has infinitely many solutions.
T) True
F) False
(16-310)
(854) What is the solution set for the linear system $\left\{\begin{array}{l}2 x+3 y=23 \\ 3 x-4 y=-8\end{array}\right\}$?
F) $\{(x, y) \mid 5 x-y=15\}$
G) $\left\{\left(0, \frac{23}{3}\right)\right\}$
H) $\left\{\left(\frac{-8}{3}, 0\right)\right\}$
J) $\left\{\left(\frac{23}{2}, 0\right)\right\}$
K) None of $F), G),(H)$, and J)
(16-310T)
855. A way to eliminate x from the system

$$
\left\{\begin{array}{l}
2 x+3 y=23 \\
3 x-4 y=-8
\end{array}\right\}
$$

is to
L) multiply the first equation by 4 and the second equation by 3, then add.
M) multiply the first equation by -3 and the second equation by 2 , then add.
$\theta)$ multiply the first equation by 3 and the second equation by 2 , then add
P) multiply the first equation by 4 an θ the second equation by -3 , then add.
R) None of L),$M)(\theta)$, and p)
(16-310) 315
(856) In solving the system $\left\{\begin{array}{l}2 x+3 y=23 \\ 3 x-4 y=18\end{array}\right\}$, it is derived that $-17 y=-85$. What is the value for x ?
s) 5
T) There is no x value that works in both of these equations.
v) 4
w) 19
x) None of S) $, T, \cup$), and ω):
(16-311T)
857) For the system $\left\{\begin{array}{l}3 x+4 y=2 \\ 6 x+8 y=-1\end{array}\right\}$,
A) the solution set is $\left\{\left(0, \frac{1}{2}\right)\right\}$
B) the solution set is $\left\{\left(-\frac{1}{6}, 0\right)\right\}$
C) the solution set is $\}$
D) the solution set is $\left\{\left(\frac{3}{2}, 0\right)\right\}$
E) None of A), B), C), and D).
(16-311B)
$(16-3 / 1 B)$
(8) For the system $\left\{\begin{array}{l}10 x+4 y=8 \\ 15 x+6 y=12\end{array}\right\}$,
F) the solution set is $\}$
$G)$ the solution set is $\{(0,2)\}$
H) the solution set is $\left\{\left(\frac{4}{5}, 0\right)\right\}$
$J)$ the solution set is $\left\{\left(1, \frac{1}{2}\right)\right\}$
K) None of $F), G), H)$, and J).
(16-312T)
(859) For the system $\left\{\begin{array}{l}2 x+3 y=23 \\ 3 x-4 y=-8\end{array}\right\}$, to solve by the substitution method, the first equation can be solved for x and substituted into the $\sec 0 n \theta$ equation. solving the first equation for x yields
L) $x=\frac{23+3 y}{2}$
M) $x=\frac{-23+3 y}{2}$

大) $x=\frac{23-3 y}{2}$
P) $x=\frac{-23-3 y}{2}$
R) None of L) $(M), \theta$), and P).
(16-312M)
$8603\left(\frac{23-3 y}{2}\right)-4 y=-8$. So $y=$
S) 4
T) 5
U) -5
w) -4
x) None of $s), T,(U)$, an ω)
$(16-313 T)$
(861) The system $\left\{\begin{array}{l}3 x+4 y=2 \\ 6 x+8 y=-1\end{array}\right\}$ has
A) solution set $\{(4,5)\}$
B) solution set $\{(0,1 / 2)\}$
C) solution set $\{(2 / 3,0)\}$
D) no solution
E) None of A) , B), C), and D).
$(16-315 T)$
(862) For the equations $\left\{\begin{array}{l}2 x-5 y+4 z=11 \\ 3 x+4 y-2 z=4\end{array}\right\}$, to eliminate the variable x,
F) multiply the top equation by 3 and the bottom equation by 2 and add them together.
6) multiply the top equation by 3 and the bottom equation by -2 and add them together.
H) multiply the top equation by 2 and the bottom equation by -3 and add them together.
J) multiply the top equation by 4 and the bottom equation by 5 and add them together.
K) None of F),$G), H$), and J).
(16-315M)
863 For the equations $\left\{\begin{array}{l}3 x+4 y-2 z=4 \\ 5 x-2 y-4 z=-4\end{array}\right\}$,
When the top equation is multiplied by 5 and the bottom equation is multiplied by -3 and they are added together, the result 15 .
L) $26 y+2 z=32$
M) $2 y-6 z=0$
e) $14 y-22 z=8$
P) $-14 y+22 z=-8$
R) None of $(L), M), \theta)$, and P).
(16-315M)
864 For the equations $\left\{\begin{array}{l}2 x-5 y+4 z=11 \\ 3 x+4 y-2 z=4\end{array}\right\}$, When the top equation is multiplied by 3 and the bottom equation'is multiplied by -2 and they are added together, the result is.
S) $23 y+16 z=25$
T) $23 y-16 z=25$
U) $-23 y+16 z=-25$
w) $-23 y+16 z=25$
$x)$ None of 5$), T), U$), and w).
$(16-316 t)$
(865) The graph of a linear equation in

3-unknowns is a
A) line
B) point
C) plane
D) Parabola
E) None of A) , B) , C), and D).
$(16-317 T, M)$
(866) Which of the following is not a possibility for the intersection of 3-planes? Their intersection is a
F) point
G) line
H) plane
J) circle
K) the empty set, no point is on all 3 planes.
L) None of $F(, G), H), J)$, and K).
$(16-317 B, 318 T)$
867 The solution to $\left\{\begin{array}{l}4 x-y-4 z=11 \\ 4 x-3 y+4 z=25\end{array}\right\}$ is a
M) line
θ) point
P) plane
R) empty set
S) None of $M, \theta), P$), and R)

320
($16-3(9,320)$
(868) The solution to $\left\{\begin{array}{l}4 x-y-4 z=11 \\ 8 x-3 y-4 z=29 \\ 4 x-3 y+4 z=25\end{array}\right\}$ is a
A) point
B) line
C) plane
D) empty set
E) None of A) , B) , C), and D)
$(16-315,316)$
(869) The solution to $\left\{\begin{array}{l}2 x-5 y+4 z=11 \\ 3 x+4 y-2 z=4 \\ 5 x-2 y-4 z=-4\end{array}\right\}$ is a
F) point
G) line
H) plane
J) empty set
K) None of F), G), H), and J).
(870) The solution to $\left\{\begin{array}{c}x+y+z=1 \\ 2 x+2 y+2 z=2 \\ 3 x+3 y+3 z=3\end{array}\right\}$ is a
L) point
m) line
θ) plane
p) empty set
R) None of L) M),θ, and P)
$(16-321 \tau)$
(821) The solution to $\left\{\begin{array}{l}4 x-y-4 z=11 \\ 4 x-2 y=17 \\ 4 x-3 y+4 z=25\end{array}\right\}$ is a
T) line
U) plane
w) empty set
$x)$ None of $(L), M), \theta)$, and P).
(16-323,324)
872) Which of the following is the graph of $2 x+3 y=6 ?$
A)

B)

C)

D) None of A), B), and C)

$$
322
$$

873 Which of the following is the graph of $4 x-y \leq 8 ?$
E)
E)

G)

H) None of E),F), and G)
$(16-324,325,326,327)$
(874) The graph of the solution to $\left\{\begin{array}{c}2 x+3 y>6 \\ 4 x-y \leq 8 \\ x \geq 0\end{array}\right\}$ is
J)

k)
L)

m) None of these.

$$
324
$$

ANSWERS

TO

QUESTIONS

ANSWERS
(1) C
(2) g
(3) w
(4) a
(5) b
(6) a
(7) f
(8) b
(9) f
(10) q
(11) a
(12) d
(13) f
(14) m
(15) c
(16) g
(17) u
(18) d
(19) m
(20) b
(21) a
(22) m.
(23) b
(24) f
(25) q
(26) b
(27) t
(28) t
(29) h
(30) s
(31) C
(32) F
(33) M
(34) u
(35) B
(36). E
(37) H
(38) R
(39). X
(40) A
answers ${ }^{\text {A2 }}$ (continued)
(41) H
(61) \times
(42) J
(62) A
(43) P
(44) N
(45) D
(46) K
(47) L
(48) R
(49) X
(63) H
(64) L
(65) S
(66) X
(67) A
(68) F
(69) J
(50) A
(70) Q
(51) H
(52) L
(53) T
(54) C
(55) K
(56) P
(57) \cup
(58) D
(59) H
(60) θ
(80) P
(81) S
(82) 5
(83) ω
(84) C
(85) F
(86) K
(87) P
(88) ω
(89) B
(90) H
(91) M
(92) Q
(93) ω
(94) D
(95) F
(96) J
(97) L
(98) 5
(99) C
(100) F
(101) F
(102) K
(103) F
(104) M

105 U
$(106) A$
(108) L
(109) Q
(110) W
(111) A
(112) F
(113 M
(114) T
(115) x
(116) C
(117) E
(118) K
(119) θ

120 U

ANSWERS (CONTINUED)
(121) A
(122) G
(123) L
(124) R
(125) ω
(126) A
(127) D
(128) G
(129) M
(130) Q
(131) Z
$132 B$
(133) G
(134) M

135 S
136 ω
(137) C
(138) E
$139 K$
(140) S
(141 U
(142) C
(143) G

144 L
(146) B
(147) F
$148 \mathrm{~L}-149$
$150 x$
$151 C$
(152) G
(153) T
(154) J
$155 R$
$156 T$
$\frac{158}{159} \mathrm{H}$
$160 T$

ANSWERS (CONTINUED)
(161) D
(162) H
(163) θ
(164) A
(165) G
(166) L
(167)Q
(168) ω
(169)C
(170) G
(171) 4
(172) U
(173) B
(174) H
(175)
(176) w
(177) B 128 F
(179) θ
(180) T
(181) B
(182) F

183 M
(184) ω
$185 D$
(186) H
(187) θ
(188) ω
(189) A

190 L
(191) P
(192) T
(193) C
(194) G
(195) Q
(196) T
(197) T

$$
\begin{aligned}
& 198 \mathrm{~B} \\
& 199 \mathrm{~F} \\
& 200 \mathrm{M}
\end{aligned}
$$

ANSWERS (CONTINUED)
$201 R$
(202) X
(203) D
204) F
(205) M
(206) R

207 A
208 H
(209) M
(210) F
(211) F
(212) T
(213) R
(214) B
(215) F
(216) P
(217) U
(218) C
219) A

220 H

221	M
222	S
223	A
224	F
225	P
226	T
227	I
228	F
229	B
230	F
231	M
232	R
233	U
234	B
235	D
236	M
237	F
238	R
239	D
240	H

ANSWERS (CONTINUED)
(361) D
(362) H
(363) L
(364) T
(365) D
(366) F

367 M
(368) Q
(369) X
(370) B
(371) G
(372) K
(373) T
(374) D
(375) F
(376) θ
(377) U
(378) D
(379) H
(399) T
(380) m
$400 T$

ANSWERS (CONTINUED)
(401) B
(402) F

403 F
404) T
$405 P$
(406) S
(407) T

408 F
409) z

410 C
(411) F
(412) F
(413) F

414 K
(415) P
(416) z
(417) F
(418) T
(419) T
(420) T

421 C
(422) H
(423) K
(424) N
(425) R
(426) U
(427) A

428 H
(429) P
$430 U$
(431) A
$432 G$
433 M
434) Q

435
(436) F
$437 C$
438 H
(439) M
$440 \cup$

ANSWERS (CONTINUED)
481)
(482) U

483 B
(484) Y
$485 y$
486 H
(487) P
(488) T
$489 E$
498 H
(491) T
(492) T
(493) M
494) S
(495) B
$496 F$
497) L
$498 \cup$
499 D
500 F
501) m
(502) S

503 C
(504) F

505 L
$506 R$
507 C
508E
(509) M
(510) R
(511) Z
(512) C
(513) H
(514) P

515 T
(516) F
(517) U
(518) A
(519 H
520θ

ANSWERS (COMTINUED)

ANSWERS (COMTINUED)

601 D
(602) H
603θ 604 T
(605) D
(606) E
(607) θ
(608) Q
609) U
(610) T
(61i) T
(612) F
(613) T
(614) A
(615) G
(616) θ
(617) ω
(618) A
(619) H
(620) M

answers (CONTINUED)
(681) K

701 T
(682) M
(683) T
(684) T
$685 D$
(686) B $687 E$
688 M
689 S
690) U

691 B
(692) G
(693) L

694 S
(695) B
(696) F
(697) T

698 H
692 T
700 M
(702) N
(703) C

704 G
705 L
(706) R
707ω
708 C
709 G
(710) R
(712) H

713 M
(714) Q
$715 B$
716 F
718 U
719 C

ANSWERS (COMTINUED)

761
762
763
(764) P

765 S
766 D
767 K
(768) θ
$769 R$
770 F
$771 G$
(772 P
$773 T$
(774) C

775 G
776θ
$727 R$
778 A
779) F

780 p
(781) S

782 B
783 J
784 M
$785 R$
786 A
787 K
788 M
(789) T

790 C
(791) H

792 L
$793 \cup$
794 D
796 P
797 U
798 B
799 F
800 M

A 22
ANSWERS (CONTINUED)
841 C
(842) G
(843) L
(844) X
$845 D$
(846) J
$847 R$
$848 T$
849 T
850 F
(851 T
$852 B$
$853 T$
854 K
(855) M
(856) V

857 C
858 K
859θ
$860 T$

861 D
$862 G$
$863 L$
864 w
865 C
(866) J

862 M
868 B
869 F
870θ
$871) \omega$

PART II

MULTIPLE CHOICE
QUESTIONS THAT COME
EXACTLY FROM
SUPPLEMENTARY
MATERIALS FOR
ALGEBRA BY HEART (THIS BOOK CONTAINS WORKED HOMEWORK ASSIGNED IN ALGEBRA BY HEART)

SM
(SI) (HW-1, M) Write $\{x \mid x \varepsilon \omega$ an $\theta x<2\}$ by the listing method.
a. $\{\ldots,-1,0,1\}$
b. $\{\ldots,-1,0,2\}$
c. $\{0,1,2\}$
d. $\{0,1\}$
e. $\{1\}$
f. None of these
(S2) (HW-2,T) Write $32.3 \overline{14}=32.3141414 \ldots$ as a fraction of integers.
f. $\frac{31991}{99}$
g. $\frac{31991}{990}$
h. $\frac{32314}{1000}$
i $\frac{32314}{100}$
j. None of these
(S3) (HW-2,B) π is a member of which sets
K. Ir an θR
l. Q and I_{r}
$m \quad Q, I r$, and R
$n \quad I$, Ir, and
θ None of these
$\sin 2$.
(Si) (HW-3,B) TRUE OREALSE: $\sqrt{2} \varepsilon$ Ir
t. TRUE
f. FAlse
(55) (HW-3, B) TRUE OR FALSE: $\{3\} \subseteq\{1,2,3\}$
t. TRUE
f. FALSE.
(56) $(H w-4, T) H=\{3,4,7\} \quad K=\{5,6,7,8\}$. $H \cap K=$
P. $\{3,4,5,6,7\}$
q. $\{7\}$
r. $\phi \leftarrow e m p t y$ set
s. None of these.
(S7) (HW-4, B) State completely the property:

$$
5(x(m n)+3)=5((x m) n+3)
$$

t. associative property of multiplication.
V. associative property of addition.
w. distributive property
x. commutate property of multiplication
y. Commutative property of addition
z. None of these.
(S8) (HW-5) What is the multiplicative inverse of $121212 \ldots=. \overline{12}$
a) $\frac{100}{12}$
b) $\frac{12}{100}$
c) $\frac{33}{4}$
d) $4 / 33$
e) None of these
$\sin 3$
(Sq) $(H w-6, T) \cdot \frac{p-q}{q-p}=$
f. 1
g. -1
h. $\frac{O}{0}$
i. none of these
(S10) (Hw-b,M) Given $z>5$ and $w<-3$
$z-\omega$ is
j. $5-(-3)$
K. 5-3
l positive
m. negative
p. none of these.
(SII) (Hw-6, M) Given $z>5$ and $\omega<-3$

$$
|-3 z w|=
$$

q. $3 z \omega$
r. $-3 z w$
s. $(-3)(5)(-3)$
N. None of these
(S12) $(H W-7, T)$

$$
5-6 \div 2 \cdot 4=
$$

$$
\begin{aligned}
& t \cdot \frac{7}{w}-\frac{-2}{} \\
& x \cdot \frac{-1}{8}
\end{aligned}
$$

N. None of these

SM 4
(S13) $(H W-8, T) \frac{4(x-2 y)+7 y}{3(2 x-6 y)+19 y-10 x}=$
a. $\frac{4 x-2 y+7 y}{6 x-6 y+19 y-10 x}$
b. $\frac{4 x-8 y+7 y}{6 x-18 y+19 y-10 x}$
C. $\frac{4 x+2 y+7 y}{5 x-3 y+19 y-10 x}$
N. None of these
S14) $(H W-8, B)$ No negative exponents $\cdot\left(\frac{5 x^{-2} y^{3}}{15 x^{5} y^{-7}}\right)^{4}=$
d. $\frac{y^{10}}{37^{10}}$ d. $\frac{y^{10}}{3 x^{7}}$
e. $\frac{y^{10} x^{-7}}{3}$
f. $\frac{y^{40}}{81 x^{28}}$
g. $\frac{y^{14}}{81 x^{11}}$
N. None of these.

SOS
(S15) $(H W-9, T)\left(\frac{5 x^{4} y^{-7}}{125 x^{-3} y^{10}}\right)^{3}=$
$5^{-2} 21-51$
h. $5^{-2} x^{21} y^{-51}$
l. $5^{-2} x^{7} y^{-17}$
p. $5^{-6} x^{21} y^{-51}$
N. None of these
(S16) $(H \omega-9, B)\left(\frac{3 x^{6} y^{5}}{81 x^{-5} y^{10}}\right)^{4}=$
R. $3^{12} x^{44} y^{-20}$
S. $3^{-3} x^{11} y^{-5}$

T $3^{1} x^{15} y^{-1}$
W. $3^{-12} x^{44} y^{-20}$
N. None of these
(S17) (HW-10,T) 00021 in scientific notation is
P. 2.1
Q. $\quad 2.1 \times 10^{4}$
R. 2.1×10^{3}
S. 2.1×10^{-3}
N. None of these
$\sin 6$
(S18) $(H W-10, B) \quad 16^{-\frac{1}{4}}=$
T. 4
U. -4
$\times 2$
w, $\frac{1}{2}$
N. None of these
(S19) $(H W-11, T)(-8)^{-\frac{5}{3}}=$
$\theta \cdot \frac{1}{(-8)^{5 / 3}}$
P. $\frac{1}{8^{5 / 3}}$
R. $\frac{40}{3}$
N. None of these
(S20) (HW-11,B) $\sqrt{m^{2}}$ is always equal to S. m
T. $|m|$
N. None of these
$S M 7$
(S21) $(H W-11, B)$ For all real numbers, $\sqrt[6]{x^{18}}$ is always
w. $\left|x^{3}\right|$
x. x^{3}
y. x^{12}
N. None of these.

S22) (HW-12,T,M) Suppose $x<0$ and $y>0$. Which of the following is true?
A. $\sqrt{-x y}=\sqrt{x} \sqrt{-y}$
B. $\sqrt{-x y}=\sqrt{-x} \sqrt{y}$
C. $\sqrt{-x y}=-\sqrt{x y}$
N. None of these
S23) $(H w-13, T) \frac{2}{x}-5=$
D. $\frac{2-5}{x}$
E. $\frac{2-5 x}{x}$
F. $2 x-5$
G. $\frac{2}{x}-\frac{5}{x}$
N. None of these
$\sin 8$
(S24) $(H W-14, m) \frac{5}{\sqrt{8 x y}}$ in implied form is:
H. $\frac{5 \sqrt{8 x y}}{8 x y}$
J. $\frac{5}{\sqrt{8} \sqrt{x} \sqrt{y}}$
P. $\frac{5 \sqrt{2 x y}}{4 x y}$
N. None of these
(S25) (HW-15,T) Which is true to fill in the blank with? $\frac{3 x \sqrt[4]{y^{3}}}{\sqrt[4]{2^{5} x^{5} y^{10}}}$

$$
=\frac{3 x \sqrt[4]{2^{3} x^{3} y^{5}}}{\sqrt[4]{2^{8} x^{8} y^{12}}}
$$

$$
\begin{aligned}
& \text { R. } \frac{\sqrt{2^{5} x^{5} y^{10}}}{\sqrt{2^{5} x^{5} y^{10}}} \\
& \text { S. } \frac{\sqrt{2^{3} x^{3} y^{2}}}{\sqrt{2^{3} x^{3} y^{2}}} \\
& \text { T. } \frac{\sqrt[4]{2^{3} x^{3} y^{2}}}{\sqrt[4]{2^{3} x^{3} y^{2}}}
\end{aligned}
$$

N. None of these

SM 9
(S26) $(H \omega-16, T) \sqrt{75}-\sqrt{27}+\sqrt{3}=$
w. $\sqrt{75-27+3}$

$$
\begin{aligned}
& x \cdot 25 \sqrt{3}-9 \sqrt{3}+\sqrt{3} \\
& \text { Z. } \sqrt{25 \cdot 3}-\sqrt{9 \cdot 3}+\sqrt{3}
\end{aligned}
$$

N. None of these
(\$27)(Hw-16, B) For $x>0, \sqrt{x^{7} y}=$ (also $y>0$)
A. $x^{6} \sqrt{x y}$
B. $-x^{6} \sqrt{x y}$

C $x^{3} \sqrt{x} \sqrt{y}$
D. $-x^{3} \sqrt{x} \sqrt{y}$
N None of these
(S28) (HW-17, T) Give an example of a quadratic trinomial
F. $2 x^{2}-3 x+7$
G. $4 x^{3}+7 x^{2}+3$
H. $5 x^{4}+2 x-7$
I. $4 x^{3}+3 x^{2}+2 x+7$
τ None of these.

$$
S M-10
$$

(529) $(H W-17, B)(\sqrt{x}+x)^{2}=$

$$
\text { k. } \quad x+2 x \sqrt{x}+x^{2}
$$

L. $|x|+2|x| \sqrt{x}+x^{2}$
M. $x+x^{2}$
N. None of these
(S30) $(H \omega-18, T)\left(4 x^{3}-2 x+3\right)\left(5 x^{2}-2 x+4\right)=$

$$
\text { P. }\left(4 x^{3}\right)\left(5 x^{2}\right)-(2 x)(-2 x)+3(4)
$$

Q. $9 x^{5}+4 x^{2}+12$
R. $\left(4 x^{3}-2 x+3\right)\left(5 x^{2}\right)+\left(4 x^{3}-2 x+3\right)(-2 x)+\left(4 x^{3}-2 x+3\right)(4)$
T. $9 x^{6}+4 x^{2}+12$
N. None of these.
(S31) (HW-18,B) $25 x^{4}-49=$
A. $\left(5 x^{2}-7\right)^{2}$
B. $\left(5 x^{2}+7\right)^{2}$
C. $\left(5 x^{2}-49\right)\left(5 x^{2}+49\right)$
D. $\left(25 x^{2}-7\right)\left(25 x^{2}+7\right)$
N. None of these

Sm-11
(S32) $(H \omega-19, T)$ The first step in rationalizing the denominator in $\frac{2+\sqrt{3}}{\sqrt{5}+\sqrt{2}}$ is

$$
\text { F. } \frac{2+\sqrt{3}}{\sqrt{5}+\sqrt{2}} \cdot \frac{1}{\sqrt{5}-\sqrt{2}}
$$

G. $\frac{2+\sqrt{3}}{\sqrt{5}+\sqrt{2}} \cdot \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}+\sqrt{2}}$
H. $\frac{(2+\sqrt{3})^{2}}{(\sqrt{5}+\sqrt{2})^{2}}$
I. $\frac{2+\sqrt{3}}{\sqrt{5}+\sqrt{2}} \cdot \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}$
N. None of these
(S33) (HW-20,B) The $1^{S T}$ term, \square, filled in the long division process is

$$
2 x ^ { 2 } + 3 \longdiv { 3 x ^ { 3 } + 5 x ^ { 2 } + \frac { 9 } { 2 } x + \frac { 1 5 } { 2 } }
$$

K. x
L. $\frac{3}{2} x$
M. $\frac{3}{2}$
N. None of these

$$
5 m-12
$$

(534) $(H \omega-22, T) 12 \sqrt{x}+6 x^{3}+2 x=$
P. $2 x^{\frac{1}{2}}\left(10+3 x^{3 / 2}+x^{\frac{1}{4}}\right)$
Q. $2 x^{1 / 2}\left(6+3 x^{5 / 2}+2 x^{1 / 2}\right)$
R. $2 x^{1 / 2}\left(6+3 x^{5 / 2}+x^{1 / 2}\right)$
N. None of these
(S35)(HW22,M) $x^{2}\left(x^{2}+5\right)-\left(x^{2}+5\right)=$
S. $\left(x^{2}+5\right)\left(x^{2}-1\right)$
T. $\quad x^{2}-1+x^{2}+5$
U. $\quad x^{2}\left(x^{2}+5\right)$
w. $x^{2}-\left(x^{2}+5\right)$
N. None of these
(536)(Hw-22,B) $p q^{2}+2 p^{2} q+3 q+6 p=$ $p q(\ldots)+3(\ldots)$. Fill in the blanks
with the same value
A. $p+2 q$
B. $p+q$
C. $q+p^{2}$
D. $q+2 p$
N. None of these

$$
\operatorname{sen}-13
$$

(537) $(H w-23) 3 x^{2}-x-10$ factors into

$$
\text { F. }(3 x+10)(x+1)
$$

G. $(3 x+1)(x-10)$
H. $(3 x-1)(x+10)$
J. $(x+2)(3 x-5)$
N. None of these
S38 (HW-24,T) $5 x^{2}+x+7$
K. Factors into $(x+1)(5 x+7)$
L. factors into $(5 x+1)(x+7)$
m factors into $(5 x+1)(x+1)$
P. Is irreducible over the integers
N. None of these.
(S39) $(H W-24, B)-8 x^{2}+19 x+15$ factors into
Q. $(-8 x-5)(x+3)$
R. $(8 x+5)(x-3)$
S. $-(8 x+5)(x+3)$
T. $(8 x+5)(-x+3)$
N. None of these
sm-14
(S40) (HW-25,T) One of the first steps to factoring $4 x^{2}-16 x+15$ by the reduce to "group, then factor " method is to find 2 numbers whose
A. whose sum is 4 and whose product is 60 .
B. whose sum is -16 and whose product is 60 .
C. Whose sum is 15 and whose product is 60°.
N. None of these.
(s41) $(H \omega-25, m) 4 x^{2}-6 x-10 x+15=$
D. $\left(4 x^{2}-6 x\right)-(10 x+15)$
E. $\left(4 x^{2}-6 x\right)-(10 x-15)$
F. $\left(4 x^{2}-6 x\right)+(10 x-15)$
G. $\left(4 x^{2}-6 x\right)-(-10 x+15)$
N. None of these.
(542) (HW 25,B) $a^{2} b^{4}-9=$
H. $\left(a b^{2}-3\right)\left(a b^{2}+3\right)$
K. $\left(a b^{2}-3\right)^{2}$
L. $\left(a b^{2}+3\right)^{2}$
$m\left(a^{2} b^{4}-3\right)\left(a^{2} b^{4}+3\right)$
N. None of these
sm-15
S43 (HW-25,B) $27 x^{6} y^{3}-125$
P. $\left(9 x^{3} y-5\right)\left(3 x^{3} y^{2}+25\right)$

Q $\left(9 x^{3} y+5\right)\left(3 x^{3} y^{2}-25\right)$
R. $\left(3 x^{2} y-5\right)\left(\left(3 x^{2} y\right)^{2}-\left(3 x^{2} y\right) 5+5^{2}\right)$
S. $\left(3 x^{2} y-5\right)\left(\left(3 x^{2} y\right)^{2}+\left(3 x^{2} y\right) 5+5^{2}\right)$
N. None of these.
(544) $(H \omega-2 b, m)(a-b)^{3}=$
T. $\quad a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
w. $a^{3}-a^{2} b+a b^{2}-b^{3}$
X. $\quad a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
Z. $\quad a^{3}-3 a^{2} b-3 a b^{2}-b^{3}$
N. None of these.

S45 (HW-26,M) $8 x^{3}-36 x^{2}+54 x-27=$
A. $(8 x-27)^{3}$
B. $(8 x)^{3}-27^{3}$
C. $(2 x-3)^{3}$
D. $(2 x)^{3}-3^{3}$
E. $(8 x-3)^{3}$
N. None of these.
$S m-16$
(S46) (HW-26B) $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=$
F. $(a+b)^{3}$
G. $(a-b)^{3}$
H. $(a-b)\left(a^{2}+b^{3}\right)$
J. $\left(a^{2}-b^{2}\right)(a+b)$
N. None of these.
(\$47) Factor Completely: $x^{12}-1=$
P. $\left(x^{6}-1\right)\left(x^{6}+1\right)$
Q. $\left(x^{3}-1\right)\left(x^{3}+1\right)\left(x^{6}+1\right)$
R. $(x-1)\left(x^{2}+x+1\right)(x+1)\left(x^{2}-x+1\right)\left(x^{6}+1\right)$
N. None of these
(548) $x^{4}-5 x^{3}-5 x^{2}+45 x-36$ factors into $\left(x^{2}-9\right)($ \qquad). Fill in the blank.
Hint: long division can be used.
S. $x^{2}+5 x+4$
T. $x^{2}-5 x-4$
w. $x^{2}+5 x-4$
X. $x^{2}-5 x+4$
N. None of these

$$
5 m-17
$$

(S49) (HW-29T) Reduce to lowest terms:

$$
\frac{x^{3}-8}{x^{2}-x-2} \div \frac{x^{2}+2 x+4}{x^{3}+1}=
$$

A. $\frac{x^{2}+2 x+4}{x-1}$
B. $\frac{x-2}{x^{2}+x+1}$
C. $x^{2}-x+1$
D. $x^{2}+x-1$
E. $x^{2}-x-1$
N. Nons of these.
(550) $\frac{x^{3}+3 x^{2}+3 x+1}{x^{2}-1} \div \frac{x^{4}+x^{3}+x+1}{2 x-2}=$ (Hw-29M)

$$
F \cdot \frac{(x+1)^{3}}{(x-1)(x+1)} \div \frac{2(x-1)}{\left(x^{4}+1 x^{3}\right)+(x+1)}
$$

G. $\frac{(x+1)^{3}}{(x-1)(x+1)} \cdot \frac{2(x-1)}{x^{3}(x+1)-(x-1)}$

$$
H \frac{(x+1)^{3}}{(x-1)(x+1)} \cdot \frac{2(x-1)}{x^{3}(x+1)+(x+1)}
$$

N. None of these

$$
\text { SM- } 18
$$

(S51) $(H \omega-30, M) \operatorname{lcm}\left(x^{3} y^{5} z^{4}, x^{6} y^{2}, x y^{10} z^{5}\right)=$
J. $x^{6} y^{10}$
K. $x^{3} y^{10} z^{5}$
L. $x^{3} y^{2} z^{4}$
N. None of these
S52) (Hw-30,B) $\frac{5}{(x-3)(x-4)}+\frac{4}{(x-3)^{2}}=$
P. $\frac{5+4}{(x-3)^{2}(x-4)}$
Q. $\frac{5(x-4)}{(x-3)^{2}(x-4)}+\frac{4(x-3)}{(x-3)^{2}(x-4)}$
R. $\frac{5(x-3)+4}{(x-3)^{2}(x-4)}$
S. $\frac{5(x-3)}{(x-3)^{2}(x-4)}+\frac{4(x-4)}{(x-3)^{2}(x-4)}$
N. None of these

$$
\begin{array}{r}
S m-19 \\
\text { S53 }(H w-31, T) \frac{5-\frac{2}{x+4}}{\frac{3}{x+2}+\frac{4}{x-1}}=
\end{array}=
$$

T. $\frac{\frac{5-2}{x+4}}{\frac{3+4}{(x+2)+(x-1)}}$
U. $\frac{\frac{5-2}{x+4}}{\frac{3+4}{(x+2)(x-1)}}$
w. $\frac{\frac{5(x+4)-2}{x+4}}{\frac{3(x-1)+4(x+2)}{(x+2)(x-1)}}$

$$
x \cdot \frac{\frac{5(x+4)-2}{x+4}}{\frac{3(x+2)+4(x-1)}{(x+2)(x-1)}}
$$

N. None of these

$$
S m-20
$$

(554)(Hw-31, B) $\frac{\frac{1}{x^{2}}+\frac{1}{y^{2}}}{\frac{1}{x}-\frac{1}{y}} \cdot \frac{\frac{1}{y^{2}}-\frac{1}{x^{2}}}{x^{2}+y^{2}}=$

$$
\frac{A \cdot \frac{y^{2}+x^{2}}{x^{2} y^{2}}}{\frac{y-x}{x y}} \cdot \frac{\frac{x^{2}-y^{2}}{x^{2} y^{2}}}{\frac{x^{2}+y^{2}}{1}}
$$

B. $\frac{\frac{y^{2}+x^{2}}{x^{2}+y^{2}}}{\frac{y-x}{x-y}} \cdot \frac{\frac{x^{2}-y^{2}}{y^{2}+x^{2}}}{\frac{x^{2}+y^{2}}{1}}$
C. $\frac{\frac{1}{x^{2}}+\frac{1}{y^{2}}}{\frac{1}{x}-\frac{1}{y}} \cdot \frac{x^{2}+y^{2}}{\frac{1}{y^{2}}-\frac{1}{x^{2}}}$
D. $\frac{\frac{1}{y^{2}}-\frac{1}{x^{2}}}{\frac{\frac{1}{x^{2} y^{2}}-\frac{1}{x}}{x y}} \cdot \frac{\frac{1}{x^{2}}-\frac{1}{y^{2}}}{\frac{x^{2} y^{2}}{\frac{x^{2}}{1}+\frac{y^{2}}{1}}}$
N. None of these

$$
5 M-21
$$

(555)(HW-31, B) $\frac{x^{-2}+y^{-2}}{x^{-1}-y^{-1}} \cdot \frac{y^{-2}-x^{-2}}{x^{2}+y^{2}}=$
E. $\frac{\frac{1}{x^{-2}}+\frac{1}{y^{-2}}}{\frac{1}{x^{-1}}-\frac{1}{y^{-1}}} \cdot \frac{\frac{1}{y^{-2}}-\frac{1}{x^{-2}}}{x^{2}+y^{2}}$
F. $\frac{x^{\prime}-y^{\prime}}{x^{2}+y^{2}} \cdot \frac{x^{-2}+y^{-2}}{y^{2}-x^{2}}$
6. $\frac{\frac{1}{x^{2}}+\frac{1}{y^{2}}}{\frac{1}{x}-\frac{1}{y}} \cdot \frac{\frac{1}{y^{2}}-\frac{1}{x^{2}}}{\frac{1}{x^{2}}+\frac{1}{y^{2}}}$
$H \cdot \frac{\frac{1}{x^{2}}+\frac{1}{y^{2}}}{\frac{1}{x}-\frac{1}{y}} \cdot \frac{\frac{1}{y^{2}}-\frac{1}{x^{2}}}{x^{2}+y^{2}}$
N. None of these.
SM-22
(556) (HW-32T) $\frac{x^{2}-y^{2}}{(y-x) x^{3} y^{3}}=$
J. $\frac{(x-y)^{2}}{(x-y) x^{3} y^{3}}$
$K \cdot \frac{(x-y)(x+y)}{-(x-y) x^{3} y^{3}}$
L. $\frac{(x-y)(x+y)}{(x-y) x^{3} y^{3}}$
N. None of these.
(557)(Hw-32,m) $\frac{x^{-3}-y^{-3}}{x^{-1}+y^{-1}} \cdot \frac{y^{-2} x^{-2}}{x^{2}+x y+y^{2}}=$
$M \cdot \frac{\frac{1}{x^{3}}-\frac{1}{y^{3}}}{\frac{1}{x}+\frac{1}{y}} \cdot \frac{\frac{1}{y^{2}}-\frac{1}{x^{2}}}{\frac{x^{2}+x y+y^{2}}{1}}$
P. $\frac{x+y}{x^{3}-y^{3}} \cdot \frac{x^{-2}+x^{-1} y^{-1}+y^{-2}}{y^{2}-x^{2}}$
Q. $\left(x^{-3}-y^{-3}\right)(x+y)\left(y^{-2}-x^{-2}\right)\left(x^{-2}+x^{-1} y^{-1}+y^{-2}\right)$
R. None of these

$$
\begin{gathered}
5 m-23 \\
\frac{(558)(H w-32 B)}{\frac{(y-x)\left(y^{2}+x y+x^{2}\right)}{x^{3} y^{3}} \cdot \frac{x y}{y+x} \cdot \frac{(x-y)(x+y)}{x^{2} y^{2}} \cdot \frac{1}{x^{2}+x y+y^{2}}}=
\end{gathered}
$$

$$
\text { S. } \frac{(x-y)^{2}}{x^{4} y^{4}}
$$

$$
T \cdot \frac{(y-x)(x-y)}{x^{4} y^{4}}
$$

U. $\frac{(x-y)^{2}}{x^{5} y^{5}}$
x. None of these
(S59) (HW-33,B) $i^{34}=$
A. 1
B. -1
C. i
D. $-i$
E. None of these

$$
\operatorname{sm-24}
$$

S60 (HW-33,B) $(a+b i)(a-b i)=$
F. $a^{2}-b^{2}$
G. $a^{2}+b^{2} i^{2}$
H. $a^{2} i+b^{2} i$
J. None of these
(561) $(H \omega-34, T)(2+3 i)(5-4 i)(6-2 i)=$

$$
k \cdot\left[10-8 i+15 i-12 i^{2}\right](6-2 i)
$$

$$
L \cdot\left[10-12 i^{2}\right](6-2 i)
$$

M. $[10-12 i](6-2 i)$
P. None of these
(S62) $(H W-34, M) \overline{(3-2 i) \cdot(\overline{4-3 i}+5-6 i)}=$
Q. $\overline{(3-2 i)(9+3 i)}$
R. $\overline{(3-2 i)(1-3 i)}$
S. $\overline{(3-2 i)(9-3 i)}$
T. $\overline{(3-2 i)\left(9-3 i^{2}\right)}$
X. None of these

$$
S M-25
$$

$563(H W-34, B) \overline{27-9 i-18 i+6 i^{2}}=$
A. $21+27 i$
B. $2 l-27 i$

C $-2 l+27 i$
D. -2l-27i
E. None of these.
(564)(Hw-35,M) To put $\frac{\frac{1}{2}-\frac{2}{3} i}{\frac{1}{5}+\frac{1}{6} i}$ in $a+b i$ form,
multiply by
F. $\frac{\frac{1}{5}+\frac{1}{6} i}{\frac{1}{5}+\frac{1}{6} i}$
G. $\frac{1}{\frac{1}{5}-\frac{1}{6} i}$
H. $\frac{\frac{1}{5}-\frac{1}{6} i}{\frac{1}{5}-\frac{1}{6} i}$
J. $\frac{1}{\frac{1}{5}+\frac{1}{6} i}$
K. None of these

$$
5 m-26
$$

(S65) $(H \omega-36) \frac{\sqrt{5}+i \sqrt{6}}{\sqrt{3}+i \sqrt{2}}$ put in $a+b i$ form is
L. $\frac{\sqrt{15}+2 \sqrt{3}}{5}+\frac{(-\sqrt{10}+3 \sqrt{2})}{5} i$
M. $\frac{\sqrt{15}-2 \sqrt{3}}{5}-\frac{(\sqrt{10}+3 \sqrt{2})}{5} i$

$$
\text { P. } \frac{\sqrt{15}+2 \sqrt{3}}{5}-\frac{(\sqrt{10}+3 \sqrt{2})}{5} i
$$

Q. None of these
(S66) $(H W-37, \tau) \sqrt{-6}=$
R. $-\sqrt{6}$
S. $i \sqrt{6}$
T. $\sqrt{6 i}$
x. None of these
(567) (HW-37,B) $\left(\frac{-1+i \sqrt{3}}{2}\right)^{2}=$
A. $\frac{-1-2 i \sqrt{3}+i^{2} 3}{2}$
B. $\frac{-1-2 i \sqrt{3}+i 3}{4}$
C. None of these

SM-27
S68) (Hw-39, M) For the reals, $x^{2}+6=-4$ E. Is an inconsistent equation. F is an identity.
G. is a conditional equation. H. None of these.
(S69) (HW-39, M) What number satisfies $x^{2}=9$ that does not satisfy $x=3$?
J. Bi
K. $-3 i$
L. -3
M. None of these.
(S70) (HW-39-40 B,T) What is the solution set
for $5\left(2 x-\frac{3}{4}\right)+\frac{1}{3}=\frac{2}{3}\left(5 x-\frac{1}{7}\right)$?
N. $\left\{\frac{20}{3} \cdot \frac{279}{84}\right\}$
P. $\left\{\frac{279}{1680}\right\}$
Q. $\left\{\frac{279}{560}\right\}$
R. $\left\{\frac{837}{560}\right\}$
S. None of these
(571) $(H w-40, B) \frac{2}{3}\left(\frac{7 x-\beta}{\frac{2}{3} x^{2}+2 / 3}\right)=$
T. $\frac{\frac{2}{3}}{1}\left(\frac{7 x-p}{\frac{2}{3}\left(x^{2}+1\right)}\right)$
$U \frac{\frac{2}{3}}{2 / 3}\left(\frac{7 x-p}{x^{2}+2 / 3}\right)$
W. $\frac{2}{3}\left(\frac{7 x-p}{x^{2}+2 / 3}\right)$
x. None of these.
(572) (HW-40, B) what is the solution set for $\frac{5 x-2}{x^{2}+1}=\frac{2}{3}\left(\frac{7 x-p}{\frac{2}{3} x^{2}+\frac{2}{3}}\right)$?
A. $\left\{\frac{2-p}{p}\right\}$
B. $\left\{\frac{p-2}{2}\right\}$
C. $\left\{\frac{p-2}{p}\right\}$
D. $\left\{\frac{2-p}{2}\right\}$
E. None of these
sm-29
(573) (HW-41,T) what is the solution set for

$$
\frac{x}{x+5}+3=\frac{-5}{x+5} ?
$$

F. $\{5\}$
G. $\{-5\}$
H. $\}$
J. $\{-3\}$
K. None of these.
(574) (HW-41,B) What is the solution set for

$$
\frac{2}{3 x-2}-\frac{4}{x+1}=\frac{3 x+1}{3 x^{2}+x-2}
$$

L. $\left\{\frac{260}{11}\right\}$
M. $\left\{\frac{13}{9}\right\}$
P. $\left\{\frac{9}{13}\right\}$
Q. $\left\{\frac{11}{260}\right\}$
R. $\}$
S. None of these

$$
S M-30
$$

(575) $(H W-44, \tau)$ what is the solution set for $(x+5)^{2}=7 \quad ?$
T. $\{-5+\sqrt{7},-5-\sqrt{7}\}$
U. $\{-5+\sqrt{7}\}$
w. $\{-\sqrt{7}, \sqrt{7}\}$
x. None of these.
(576) (Hw-44,M). What is the solution set for $\left(x+\frac{1}{2}\right)^{2}=-4$?
A. $\left\{-\frac{1}{2}+2,-\frac{1}{2}-2\right\}$
B. $\{-2 i,+2 i\}$
C. $\left\{-\frac{1}{2}+2 i\right\}$
D. None of these.
(S77) (Hw-44, B) $2 x^{2}+11 x-6$ factors into

$$
E \cdot(x-6)(2 x+1)
$$

F. $(x-6)(2 x-1)$
G. $(2 x+1)(x+6)$
H. $(x+6)(2 x-1)$
J. None of these
$5 m-31$
(578) (HW-45 M) In the complete the square process, what is the same number you f_{11} in both blanks below to make a perfect square on the left of the equal sign?

$$
\begin{aligned}
& x^{2}-\frac{1}{2} x+ \\
& k \cdot \frac{1}{16}
\end{aligned}
$$

$$
\text { L. }-\frac{1}{16}
$$

M. $\frac{1}{4}$
P. $-\frac{1}{4}$
Q. None of these.
(S79) (Hw-45;B) The solution set for $2 x^{2}-3 x+9=0$
is $\left\{\frac{3-3 i \sqrt{7}}{4}, \frac{3+3 i \sqrt{7}}{4}\right\}$. What does
$2 x^{2}-3 x+9$ factor into?
R. $\left(x-\left[\frac{3-3 i \sqrt{7}}{4}\right]\right)\left(x-\left[\frac{3+3 i \sqrt{7}}{4}\right]\right)$
S. $2\left(x-\left[\frac{3-3 i \sqrt{7}}{4}\right]\right)\left(x-\left[\frac{3+3 i \sqrt{7}}{4}\right]\right)$
w. None of these

SM -32
(580) (HlW-46,T) What is the discriminant for $3 x^{2}+2 x+7=0$?
A. 80
B. -80
C. 88
D. -88
E. None of these.
(S81) $(H W-46, T)$ When the discriminant for a quadratic equation is negative,
F. thereare 2 real solutions
6 . There is 1 real solution of multiplicity 2 .
H. there are 2 imaginary solutions.
J. None of these.
$\frac{582}{3 x^{2}}(H w-46, M)$ The solution set for

$$
\begin{aligned}
& 3 x^{2}+2 x+7=0 \text { is } \\
& K \cdot\left\{\frac{-1+2 i \sqrt{5}}{3}, \frac{-1-2 i \sqrt{5}}{3}\right\} \\
& L \cdot\left\{\frac{1+2 i \sqrt{5}}{3}, \frac{1-2 i \sqrt{5}}{3}\right\}
\end{aligned}
$$

M. $\{-80\}$

$$
\text { P. }\left\{\frac{-1+2 i \sqrt{5}}{6}, \frac{-1-2 i \sqrt{5}}{6}\right\}
$$

Q. None of these.
$5 m-33$
(583) (HW-47,) By grouping, then factoring,
$2 x^{3}+18 x-3 x^{2}-27$ factors into
R. $\left(x^{2}-9\right)(2 x+3)$
S. $\left(x^{2}-9\right)(2 x-3)$
T. $\left(2 x^{2}-9\right)(x+3)$
U. $\left(x^{2}+9\right)(2 x-3)$
w. None of these.
(\$84) (HW-47, m) The solution set for $x^{2}+9=0$ for all real and complex numbers is:
A. $\{+3 i,-3 i\}$
B. $\{+3,-3\}$
C. $\{+3,-3,+3 i,-3 i\}$
D. None of these
(585) (HW-47,B) Fill in the box for the exponent with

$$
\begin{aligned}
& \frac{1}{5}(3 x+2)^{\frac{4}{3}}(x+1)^{-\frac{4}{5}}+4(x+1)^{\frac{1}{5}}(3 x+2)^{1 / 3}= \\
& (3 x+2)^{\frac{1}{3}}(x+1)^{-\frac{4}{5}}\left[\frac{1}{5}(3 x+2)^{\frac{4}{3}-\frac{1}{3}}+4(x+1)\right] \\
& \text { E. } \frac{1}{5}-\frac{4}{5} \\
& \text { F. }-\frac{4}{5}
\end{aligned}
$$

6. $\frac{1}{5}-\left(-\frac{4}{5}\right)$
H. $\frac{1}{5}$
J. None of these

SM-34
(586) $(H W-48, M, B)$ the solution set for $\frac{(3 x+2)^{\frac{1}{3}}}{(x+1)^{\frac{1}{5}}}\left[\frac{23}{5} x+\frac{22}{5}\right]=0$ is
K. $\left\{-1,-2 / 3, \frac{-22}{23}\right\}$
L. $\left\{-2 / 3,-\frac{22}{23}\right\}$
M. $\{-22 / 23\}$
P. None of these.
(587) (HW-49, T,M) When both sides of the equation $2 x-11=\sqrt{x-5}$ are squared you get
Q. $4 x^{2}-121=x-5$
R. $4 x^{2}+121=x-5$
S. $4 x^{2}-44 x+121=x-5$
T. $4 x^{2}-44 x-121=x-5$
U. $4 x^{2}+44 x+121=(x-5)^{2}$
w. $4 x^{2}+44 x+121=x-5$
x. None of these

Sm-35
(588) (Hw-49). In solving $2 x-\sqrt{x-5}=11$, the radical was isolated, both sides' of the equation were squared and it was de rived that $(4 x-21)(x-6)=0$. The solution set for the original equation is A. $\left\{\frac{21}{4}, 6\right\}$
B. $\left\{\frac{21}{4}\right\}$
C. $\{6\}$
D. $\}$
E. None of these.
(589) (HW-50,T) Squaring both sides of $\sqrt{x+2}+\sqrt{x-6}=\sqrt{x+9}$ gives
F. $x+2+2 \sqrt{x+2} \sqrt{x-6}+x-6=x+9$
6. $x+2+x-6=x+9$
H. $x+2+\sqrt{x+2} \sqrt{x-6}+x-6=x+9$
J. $x+2+x-6=(x+9)^{2}$
K. None of these
$5 M-36$
(590) (Hw-50,51) The original equation is $\sqrt{x+2}-\sqrt{x+9}+\sqrt{x-6}=0$. Radicals were isolated.
Both sides of the equation were squared and eventually it was derived that
$(x-7)(3 x+31)=0$. What is the solution set for the original equation?
L. $\left\{7,-\frac{31}{3}\right\}$
M. $\left\{-7, \frac{3 L}{3}\right\}$
P. $\left\{\frac{-3 L}{3}\right\}$
Q. $\{7\}$
R. None of these.
(591) (HWL52) To find all real solutions for $x-3-\sqrt{x-3}-12=0$, let $\omega=\sqrt{x-3}$ and get $w^{2}-w-12=0$, then $(w-4)(w+3)=0$.
what is the solution set for $x-3-\sqrt{x-3}-12=0$, the original equation?
S. $\{19,12\}$
T. $\{19\}$
U. $\{12\}$
X. $\{4,-3\}$
Z. $\{4\}$
A. None of these.
$5 m-37$
(s92) (HW-53M) The solution set (all real and complex solutions) for $0=x^{4}-x^{2}-6$ is
B. $\{-\sqrt{3}, \sqrt{3}\}$
C. $\{-\sqrt{2},-\sqrt{2}\}$
D. $\{-\sqrt{3}, \sqrt{3},-i \sqrt{2}, i \sqrt{2}\}$
E. $\{-\sqrt{3}, \sqrt{3},-\sqrt{2}, \sqrt{2}\}$
F. None of these.
(593)(Hw-53,B) When $w^{2}+w+6=0$, then $w=$
G. 3 or -2
H. ${ }^{3}$
5. -2
K. None of these.
(594) (Hw-55)A lot is originally a square. A new lot is formed by expanding each side to where the new lot has each side 2 feet longer than a side of the original lot. The new lot is also a square. The new lot has an area of 50 square feet more than the original lot. Let x be the side length of the original square. What equation describes
the area?
L. $(x+2)^{2}=x^{2}+50$
M. $x^{2}=(x+2)^{2}+50$
P. $(x-2)^{2}=x^{2}+50$
Q. $x^{2}=(x-2)^{2}+50$
R. None of these.

SM-38
(595) (HW-56,57) Sue has 50 gallons of liquid E that is a 15% solution of sugar. Sue has a large supply of a 50% solution of sugar. Let x be the number of gallons of the 50% solution to be mixed with liquid E to get a 35% solution. Which equation describes the situation?
S. $(50)(.50)+x(.15)=x(.35)$
T. $(50)(.15)+x(.35)=(50+x)(.50)$
U. $(50)(.35)+x(.50)=(50+x)(.50)$
$\omega .(50)(.15)+x(.50)=(50+x)(.35)$
x. None of these.
(996) (Hw-57, M) Which equation be low is equivalent to $7.5+.5 x=17.5+.35 x$?
A. $75+50 x=175+35 x$
B. $75+5 x=175+35 x$
C. $750+50 x=175+35 x$
D. $750+50 x=1750+35 x$
E. None of these.
$5 m-39$
(597) (HW-58) Jane can do a job in 3 hours working alone. Bob can do the job in 4 hours working alone. Bob starts the job at 12 noon and works until 1:30 PM, then Jane and Bob work together until the job is completed. Let x be the time in hours it takes Bob and Jane working together to complete the job. Which equation below describes the situation?

$$
\text { F. } \quad \frac{3}{2}\left(\frac{1}{4}\right)+x \cdot \frac{1}{4}+x \cdot \frac{1}{3}=\frac{1}{3}
$$

G. $\frac{3}{2}\left(\frac{1}{4}\right)+x \cdot \frac{1}{4}+x \cdot \frac{1}{3}=\frac{3}{2}$
H. $\frac{3}{2}\left(\frac{1}{3}\right)+x \cdot \frac{1}{4}+x \cdot \frac{1}{3}=1$
J. $\frac{3}{2}(1 / 3)+x \cdot \frac{1}{4}+x \cdot \frac{1}{3}=0$
K. None of these.
598 (HW-58, T, M) Bob can do a job in 4 hours working alone. Bob and Jane work together on the job for time x. What is the fraction of the job done by Bob working with Jane?
L. $4 x$
M. $x \cdot \frac{1}{4}$
P. $\quad x(.4)$
Q. None of these.
$5 m-40$
(S-99) $(H W-59, T) \frac{x}{4}+\frac{x}{3}=\frac{5}{8}$. What is the value of x ?
R. $\frac{14}{15}$
S. $\frac{15}{14}$
T. $\frac{12.8}{7.5}$
x. None of these.
S100) (HW-60) Sam deposits \$200 in an account that yields x per cent compounded annually. At the end of 2 years the accumulated principal and interest is $\$ 300$. Which equation describes the situation?

$$
\begin{aligned}
& \text { A. }(200+200 \times(.01) 1)+(200+200 \times(.01) 1)=300 \\
& \text { B. }(200+200 \times(.01) 1+(200+200 \times(.01) 1)=200
\end{aligned}
$$

C. $(200+200 x(.01) 1)+(200+200 \times(.01) 1) x(.01)=300$
D. None of these.

S101 (HW-60) Sam deposits $\$ 200$ in an account that yields x per cent compounded annually. What is the principal after 1 year?

$$
\begin{array}{ll}
\text { E. } & 200+200 x(.01) 1 \\
\text { F. } & 200+200 x(1) \\
\text { G. } & 200+x(.01) 1 \\
H . & 200+x
\end{array}
$$

J. None of these

SM-41
(5102 (Hw-62,T) $\{x \mid x>-10\}$ put in interval notation is
K. $(\infty,-10)$
L. $(-10, \infty)$
M. $(-10, \infty]$
P. $[-10, \infty]$
Q. None of these
(S103) $(H \omega-62, T)\{x \mid 1<x \leq 5\}$ put in interval notation is
R. $[1,5]$
S. $[1,5)$
T. $(1,5]$
U. $(1,5)$
x. None of these.
(5(104)(Hw-62m) The open interval $(0,5)$ given in set-builder notation is
y. $\{x \mid x<5\}$
Z. $\quad\{x \mid x<0$ OR $x>5\}$
A. $\{x \mid x>0$ OR $x<5\}$
B. $\{x \mid \quad 0<x<5\}$
C. None of these.
$5 m-42$
(5105) (Hw-62 m) The open interval ($-\infty, 5$) given in set-builder notation is
D. $\{x \mid x<5\}$
E. $\{x \mid \quad 0<x<5\}$
F. $\{x \mid x \leq 5\}$
G. $\{x \mid 0 \leq x \leq 5\}$
H. None of these.
(S106) (H1W-63,T) A correct first step to solve
$5-\frac{2}{3}(4 x-2) \leq-7(4-3 x)$ is
J. $5-\frac{8}{3} x-\frac{4}{3} \leq-28-21 x$
k. $5-\frac{8}{3} x+\frac{4}{3} \geq-28+21 x$
L. $5-\frac{8}{3} x+\frac{4}{3} \leq-28+21 x$
M. None of these
(5107)(HL-63, B) Given $\frac{-71}{3} x \leq \frac{-103}{3}$
which of the following is true?
N. $x \leq \frac{103}{71}$
P. $x \geq \frac{(-103)(-71)}{3.3}$

Q $\quad x \geq \frac{-103}{71}$
R. None of these.
$5 m-43$
(108) $(H W-64, T)$ The sketch to the solution of $\frac{2}{3} x+5>3$ OR $\frac{2}{3} x+5<-3$ is
S.

U.

w

x. None of these.
(5109) (HW-64, M) which is a correct next line after

$$
\begin{aligned}
& -\frac{2}{3} \leq \frac{2-3 x}{-5} \leq \frac{1}{7} \\
& \text { A. }(-5)\left(-\frac{2}{3}\right) \leq 2-3 x \leq-5\left(\frac{1}{7}\right) \\
& \text { B. }(-5)\left(-\frac{2}{3}\right) \geq 2-3 x \geq-5\left(\frac{1}{7}\right) \\
& \text { C. }\left(-\frac{1}{5}\right)\left(-\frac{2}{3}\right) \leq 2-3 x \leq-\frac{1}{5}\left(\frac{1}{7}\right) \\
& \text { D. }\left(-\frac{1}{5}\right)\left(-\frac{2}{3}\right) \geq 2-3 x \geq-\frac{1}{5}\left(\frac{1}{7}\right)
\end{aligned}
$$

E. None of these.
$5 m-44$
S110) $(H W-64, M)$ Solve $-\frac{2}{3} \leq \frac{2-3 x}{-5} \leq \frac{1}{7}$
F. $\left(\frac{-4}{9}, \frac{19}{21}\right)$
G. $\left[-\frac{4}{9}, \frac{19}{21}\right]$
H. $\left(-\infty,-\frac{4}{9}\right) \cup\left(\frac{19}{21}, \infty\right)$
J. $\left(-\infty,-\frac{4}{9}\right] \cup\left[\frac{19}{21}, \infty\right)$
K. None of these

Sili) (Hw-65,T) Interval notation:

$$
(-2,5] \cup(3,6)=
$$

L. $(-2,6)$
M. $(-2,6]$
P. $[3,5)$

Q $(3,5]$
R. None of these.

SI12) (HW-65, T) Which line follows from

$$
\left|\frac{3}{5}-\frac{2}{3} x\right| \geq \frac{1}{2}
$$

S. $\frac{3}{5}-\frac{2}{3} x \geq \frac{1}{2}$
T. $\frac{3}{5}-\frac{2}{3} x \geq \frac{1}{2}$ OR $\frac{3}{5}-\frac{2}{3} x \leq-\frac{1}{2}$
U. $\frac{3}{5}-\frac{2}{3} x \geq \frac{1}{2}$ AND $\frac{3}{5}-\frac{2}{3} x \leq-\frac{1}{2}$
X. None of these.
$5 m-45$
(S113) (HW-66, T) Which line follows from

$$
\left|\frac{2}{7}-\frac{3}{4} x\right| \leq \frac{1}{3}
$$

A. $-\frac{1}{3} \leq \frac{2}{7}-\frac{3}{4} x \leq \frac{1}{3}$
B. $\frac{2}{7}-\frac{3}{4} x \geq 1 / 3$ OR $\frac{2}{7}-\frac{3}{4} x \leq-1 / 3$
C. $\frac{2}{7}-\frac{3}{4} x<\frac{1}{3}$
D. None of these

S114)(Hw-66)Solve $\left|\frac{2}{7}-\frac{3}{4} x\right| \leq \frac{1}{3}$
E. $\left(-\infty,-\frac{4}{63}\right] \cup\left[\frac{52}{63}, \infty\right)$
G. $\left(-\infty,-\frac{4}{63}\right] \cap\left[\frac{52}{63}, \infty\right)$
H. $\left(-\infty,-\frac{4}{63}\right]$ OR $\left[\frac{52}{63}, \infty\right)$
I. None of these

S115) (HW-66, M) Suppose $\frac{-13}{21} \leq-\frac{3}{4} x \leq \frac{1}{21}$ which of the following is true?

$$
K \cdot\left(-\frac{4}{3}\right)\left(\frac{-13}{21}\right) \geq x \geq\left(-\frac{4}{3}\right)\left(\frac{1}{21}\right)
$$

L. $\left(-\frac{4}{3}\right)\left(-\frac{13}{21}\right) \leq x \leq\left(-\frac{4}{3}\right)\left(\frac{1}{21}\right)$
M. $\left(-\frac{4}{3}\right)\left(\frac{-13}{21}\right) \geq x \leq\left(-\frac{4}{3}\right)\left(\frac{1}{21}\right)$
P. None of these

$$
s m-46
$$

S116) (HW-67,T) Suppose $\frac{2}{x+2}-\frac{2}{2 x-3}<0$; which line follows?
Q. $\frac{2-2}{(x+2)(2 x-3)}<0$
R. $\frac{2-2}{(x+2)-(2 x-3)}<0$
S. $\frac{2(2 x-3)-2(x+2)}{(x+2)+(2 x-3)}<0$
$\tau \cdot \frac{2(2 x-3)-2(x+2)}{(x+2)(2 x-3)}<0$
U. None of these

SII7(HW-67,B) $(x+2)(2 x-3)=$
A. $(x-2)(2)(x-3)$
B. $(x-2) 2\left(x-\frac{3}{2}\right)$
C. $(x-[-2]) 2\left(x-\frac{3}{2}\right)$
D. $(x-[-2]) 2(x-3)$
E. None of these

SM-47
(S118)(HW-67,B) According to the way you were taught, to analyze

$$
\frac{-10}{(x-[-2]) 2\left(x-\frac{3}{2}\right)}<0
$$

make marks on the number line at
G. $-2, \frac{3}{2}$
H. $\quad 2,-\frac{3}{2}$
I. $-10,2,-2,-\frac{3}{2}$
K. $-10,2,-3 / 2$
M. None of these

S119)(HW-68, m) $\frac{x-3}{-2 x-8}$ factors into P. $\frac{x-[-3]}{-2(x-8)}$
Q. $\frac{x-3}{-2(x+8)}$
R. $\frac{x-3}{-2(x-[-4])}$
S. $\frac{x-3}{-2(x-4)}$
T. None of these.

Sm -48
S120 (HW-68,T) For $\sqrt{\frac{x-3}{-2 x-8}}$ to be real, $\frac{x-3}{-2 x-8}$ must be
A. greater than or equal to zero.
B. less than zero.
C. ether positive or negative
D. none of these

S121) $(H W-68, B)$ For $x<-4\left(\begin{array}{ccc}x & & \\ -4 & 3\end{array}\right)$ $\frac{x-3}{-2(x-[-4])}$ is
E. positive
G. negative
H. zero
J. none of these

S122) $(H \omega-69, T)$ For $-4<x<3$, $\frac{x-3}{-2(x-[-4])}$ is
K. positive
L. negative
M. Zero
P. none of these.

$$
5 m-49
$$

S123) $(H w-69, M)$ For $x>3,\left(\begin{array}{cc}-1 & 10 \\ -4 & 3 x\end{array}\right)$.

$$
\frac{x-3}{-2(x-[-4])} \text { is }
$$

R. Positive
S. negative
T. zero
U, none of these
(S124) (HW-69, B) For $x=-4$,

$$
\frac{x-3}{-2(x-[-4])} \text { is }
$$

A. positive
B. negative
C. Zero
D. none of these.
(S125) $(H W-70, T)$ For $x=3$,

$$
\begin{equation*}
\frac{x-3}{-2(x-[-4])} \tag{SLR}
\end{equation*}
$$

F. Positive
G. Negative
H. Zero
J. None of these

$$
5 m-50
$$

(5126) (HW-72,T) The directed distance from 6 to -1 is
F. 5
G. 7
H. $\frac{6-1}{2}$
I. None of these
(5127) $(H \omega-72, M)$ The midpoint between -10 and $-\frac{3}{2}$ is
K. $\frac{-10+\left(-\frac{3}{2}\right)}{2}$
L. $\frac{-10+\frac{3}{2}}{2}$
M. $\quad-6$
P. None of these
S 128)(HW-72,B) $\frac{y_{1}+y_{2}}{2}-y_{1}=$
Q. $\frac{y_{1}+y_{2}-y_{1}}{2}$
R. $\frac{y_{1}+y_{2}-2 y_{1}}{2}$
$S \frac{y_{2}}{2}$
T. None of these

U. $\frac{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}}{2}$
$w \cdot \frac{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}}{4}$

$$
x \cdot \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

z. None of these
S-130 (HW-74,T) The slope of the line between $\left(\frac{-3}{8}, 2\right)$ and $\left(\frac{1}{4}, \frac{-2}{3}\right)$ is
A. $\frac{8}{3} \cdot \frac{20}{32}=\frac{160}{96}$
B. $\frac{-8}{3} \cdot \frac{32}{20}=\frac{-64}{15}$
C. $\frac{8}{3} \cdot \frac{32}{20}=\frac{64}{15}$
D. $-\frac{8}{3} \cdot \frac{20}{32}=-\frac{160}{96}$
E. None of these

$$
5 m-52
$$

S-131 (HW-74,T,M) $\frac{1}{4}-\left(-\frac{3}{8}\right)=$
G. $\frac{4}{12}$
H. $\frac{3}{32}$
J. $\frac{20}{32}$
k. None of these.
(S-132) $(H 1 w-74, M)$ The midpoint between $(3,-6)$ an $\theta(-1,7)$ is
L. $\left(1, \frac{1}{2}\right)$
M. $\left(\frac{-3}{2}, \frac{-8}{2}\right)$
P. $(-3,6)$
Q. None of these

S133) (HW 74, B) The slope of the line between $(5,-2)$ and $\left(1, \frac{1}{2}\right)$ is
R. $\frac{\frac{1}{2}-(-2)}{1-5}$
S. $\frac{\frac{1}{2}+(-2)}{1+5}$
$T .\left(\frac{5+1}{2}, \frac{-2+\frac{1}{2}}{2}\right)$
W. None of these.
$S M-53$
5134 (HW-75,T) For the figure at the right to be a square, the slopes of the line segments L_{1} and L_{2} must be

A. The same
B. reciprocals of each other
C. negative reciprocals of each other
D. None of these.

S135) (HW-75, B). The length of the line segment between
 $(-1,0)$ and $(0,1)$ is
F. 2
G. $\sqrt{2}$
H. 1
J. None of these

S136) $(H w-76, T) 2 x+5 y=10$ solved
for y is
K. $y=\frac{2}{5} x-2$
L. $y=\frac{-2}{5} x+2$
M. $y=-\frac{2}{5} x-2$
P. None of these

SM -54
(S137) (HW-76,B) A standard form for $y-3=\frac{5}{2}(x-(-2))$ is
Q. $-5 x+2 y=16$
R. $\quad 5 x+2 y=16$
S. $-5 x-2 y=16$
I. None of these
S138(HW-76,T) What is the slope of the line perpendicular to $2 x+5 y=10$?
U. $-2 / 5$
w. $-\frac{5}{2}$
$\times \frac{2}{5}$
z. None of these.
(S139) (HW-77,T,M) What is the slope of the line perpendicular to the line through the points $(-2,5)$ and $(3,7)$?
A. $\frac{7-5}{3-(-2)}$
B. $\frac{5}{2}$
C. $-5 / 2$
D. $\left(-\frac{2+3}{2}, \frac{5+7}{2}\right)$
E. None of these.

Sm-55
(S140) (HW-77) Which is an equation for the line that is the perpendicular bisector of the line segment between $(-2,5)$ and $(3,7)$?
F. $5 x+2 y=29$
G. $5 x+2 y=\frac{29}{2}$
H. $2 x+5 y=\frac{2 q}{2}$

J $2 x+5 y=29$
K. None of these.
(S141) (Hw-78,T) What is the point $\frac{1}{4}$ of the way from $(2,3)$ to $(4,7)$? It is nearest the point $(2,3)$.
L. $\left(\frac{5}{2}, 4\right)$
M. $(3,5)$
P. $\left(\frac{3}{2}, \frac{5}{2}\right)$
Q. None of these
(S142) (HW-78) What is an equation for the line through $\left(\frac{5}{2}, 4\right)$ with slope 5 ?
R. $y-\frac{5}{2}=5(x-4)$
S. $y-\frac{5}{2}=-\frac{1}{5}(x-4)$
T. $y-4=-1 / 5\left(x-\frac{5}{2}\right)$
U. $y-4=5\left(x-\frac{5}{2}\right)$
x. None of these.

$$
S M-56
$$

(5143) (HW-80,T) What is the stand ard form for a circle with center $(-5,6)$ and radius 4?

$$
\text { A. }(x-5)^{2}+(y-6)^{2}=4
$$

B. $(x-[-5])^{2}+(y-6)^{2}=4^{2}$
C. $(x-[-5])^{2}+(y-6)^{2}=4$
D. None of these.
(5144)(Hw-80,m) A correct next step to get

$$
15 x^{2}+6 x+15 y^{2}-10 y=-\frac{3}{5}
$$

into standard form is

$$
\text { F. } x^{2}+6 x+15 y^{2}-10 y=\frac{-3}{5} \cdot 15
$$

G. $x^{2}+\frac{6}{15} x+y^{2}-\frac{10}{15} y=\frac{-3}{5} \cdot 15$

H $\quad x^{2}+\frac{6}{15} x+y^{2}-\frac{10}{15} y=\frac{-3}{5} \cdot \frac{1}{15}$
J. None of these.
S145)(HW-80, B) A correct next line that follows
from $x^{2}+\frac{2}{5} x+\frac{1}{25}+y^{2}-\frac{2}{3} y+\frac{1}{9}=\frac{1}{25}-\frac{1}{25}+\frac{1}{9}$ is K. $\left(x+\frac{1}{5}\right)^{2}+\left(y-\frac{1}{3}\right)^{2}=\frac{1}{9}$
L. $\left(x+\frac{1}{25}\right)^{2}+\left(y-\frac{1}{9}\right)^{2}=1 / 3$
M. $\left(x+\frac{2}{5}\right)^{2}+\left(y-\frac{2}{3}\right)^{2}=\frac{1}{9}$
P. None of these
sm-57
(5146) (HW-80, B) The graph of $\left(x+\frac{1}{5}\right)^{2}+\left(y-\frac{1}{3}\right)^{2}=\frac{1}{9}$ is a circle with
Q. center $\left(\frac{1}{5},-\frac{1}{3}\right)$ and radius $\frac{1}{9}$
R. center $\left(\frac{1}{5},-\frac{1}{3}\right)$ and radius $\frac{1}{3}$
S. center $\left(-\frac{1}{5}, \frac{1}{3}\right)$ and radius $\frac{1}{9}$
T. None of these.
(S147) (HW-81,T). $12 x+3 y^{2}=0$ put into standard form for a parabola is
U. $y^{2}=-4 x$
W. $\quad x=\frac{1}{4}(y-0)^{2}+0$
X. $\quad x=-\frac{1}{4}(y-0)^{2}+0$
z. None of these.

S148)(HW-81, M) Which is a pair of symmetric partners for the parabola $12 x+3 y^{2}=0 \quad ?$
A. $(-1,2)$ and $(1,2)$
B. $(-1,2)$ and $(-1,-2)$
C. $(-1,2)$ and $(1,-2)$
D. None of these.
$S M-58$
(S149) (Hw-81B) $-\frac{1}{5} y^{2}+2 y-6=$
F. $-\frac{1}{5}\left(y^{2}-10 y\right)-6$
G. $-\frac{1}{5}\left(y^{2}+2 y\right)-6$
H. $-\frac{1}{5}\left(y^{2}-2 y\right)-6$
J. None of these

$$
\begin{gathered}
\left(5150(H \omega-81 B)-\frac{1}{5}\left(y^{2}-10 y\right)-6=\right. \\
K .-\frac{1}{5}\left(y^{2}-10 y+25\right)-6-25 \\
L \cdot-\frac{1}{5}\left(y^{2}-10 y+25\right)-6-5 \\
2 \quad 10 u+25)-6+5
\end{gathered}
$$

$$
M .-\frac{1}{5}\left(y^{2}-10 y+25\right)-6+5
$$

P. None of these
(5151 (HW-82T) The parabola

$$
x=-\frac{1}{5}(y-5)^{2}-1 \text { has vertex }
$$

Q. $(5,-1)$
$R \quad(-1,-5)$
S. $(1,-5)$
T. $(-1,5)$
w. $(-1,-5)$
X. $(-5,-1)$
z. None of these

$$
s m-59
$$

(S152) (HW-82T) The axis of symmetry for $x=-\frac{1}{5}(y-5)^{2}-1$ is
A. $y=5$
B. $y=-5$
C. $x=1$
D. $\quad x=-1$
E. None of these
(5153) (HW-82m) Symmetric partners for
$x=-\frac{1}{5}(y-5)^{2}-1$ are
F. $(-6,0)$ and $(6,0)$
G. $(-6,-5)$ and $(-6,5)$
H. $(-6,0)$ and $(-6,10)$
J. None of these.

S154) (HW-83T) What is the range of the Function $g=\{(3,8),(2,8)\}$?
K. $\{8\}$
L. 8
M. $\{2,3\}$
P. 2,3
Q. $(2,8)$
R. None of these

$$
5 m-60
$$

(s155)(Hw-83,m) $f(x)=3 x^{2}-2 x+4$

$$
f(a+b)=
$$

S. $\left(3 x^{2}-2 x+4\right)(a+b)$
T. $3 a^{2}+3 b^{2}-2 a+2 b+4$
U. $3 a^{2}+6 a b+3 b^{2}-2 a+2 b+4$
w. $3 a^{2}+6 a b+3 b^{2}-2 a-2 b+4$
x. None of these
S156 (HW-83,B) $f(x)=3 x^{2}-2 x+4$

$$
\frac{f(x+h)-f(x)}{h}=
$$

A. $\frac{\left(3 x^{2}-2 x+4\right)(x+h)-\left(3 x^{2}-2 x+4\right)}{h}$
B. $\frac{3(x+h)^{2}-2(x+h)+4-\left[3 x^{2}-2 x+4\right]}{h .}$
C. $\frac{3 x^{2}+3 h^{2}-2 x+h+4-\left[3 x^{2}-2 x+4\right]}{h}$
D. $\frac{3\left(x^{2}+h^{2}\right)-2 x-2 h+4-\left[3 x^{2}-2 x+4\right]}{h}$
E. None of these.

Sm-61
S157)(Hw-83,B) $\frac{3(x+h)^{2}-2(x+h)+4-\left[3 x^{2}-2 x+4\right]}{h}=$
F. $\frac{3 x^{2}+3 h^{2}-2 x-2 h+4-3 x^{2}+2 x-4}{h}$
G. $\frac{3 x^{2}+6 x h+3 h^{2}-2 x-2 h+4-3 x^{2}+2 x-4}{h}$
H. $\frac{3 x^{2}+6 x h+3 h^{2}-2 x+2 h+4-3 x^{2}-2 x+4}{h}$
J. None of these
(S158)(HW-83,B) $\frac{6 x h+3 h^{2}-2 h}{h}=$
K. $\frac{6 x+3 h^{2}-2 h}{h}$
L. $\quad(-h)\left(6 x h+3 h^{2}-2 h\right)$
M. $6 x+3 h-2$
P. None of these.
$5 m-62$
S159 (Hw-84,T) $g(x)=\frac{1}{\sqrt{2 x+3}}$

$$
\frac{g(x+h)-g(x)}{h}=
$$

Q. $\frac{\frac{1}{\sqrt{2 x+3}}(x+h)-\frac{1}{\sqrt{2 x+3}}}{h}$

$$
\begin{aligned}
& \text { R. } \frac{\frac{1}{\sqrt{(2 x+3)(x+h)}}-\frac{1}{\sqrt{2 x+3}}}{h} \\
& \text { S. } \frac{1}{\sqrt{2(x+h)+3}}-\frac{1}{\sqrt{2 x+3}}
\end{aligned}
$$

T. None of these

S160) $(H W-84, m) \frac{1}{\sqrt{2(x+h)+3}}-\frac{1}{\sqrt{2 x+3}}=$
U. $\frac{\sqrt{2 x+3}-\sqrt{2 x+2 h+3}}{\sqrt{2 x+2 h+3} \sqrt{2 x-3}}$
w. $\frac{1-1}{\sqrt{2(x+h)+3} \sqrt{2 x+5}}$
$x \cdot \frac{\sqrt{2 x+3}-\sqrt{2 x+2 h+3}}{\sqrt{2 x+2 h+3}+\sqrt{2 x+3}}$
z. None of these

$$
5 M-63
$$

(S161) $(H \omega-84, m)(\sqrt{2 x+3}-\sqrt{2 x+2 h+3})(\sqrt{2 x+3}+\sqrt{2 x+2 h+3})=$
A. $\sqrt{2 x+3}-2 \sqrt{2 x+3} \sqrt{2 x+2 h+3}+\sqrt{2 x+2 h+3}$
B. $(\sqrt{2 x+3})^{2}-2 \sqrt{2 x+3} \sqrt{2 x+2 h+3}+(\sqrt{2 x+2 h+3})^{2}$
C. $(2 x+3)-(2 x+2 h+3)$
D. None of these

S162) $(H \omega-85, T)$ Name 2 ordered pairs that satisfy $x=|y|$. x is associated with F. $(2,4)$ and $(2,-4)$ the 1 Terms
G. $(2,2)$ and $(2,-2)$
H. $(-2,2)$ and $(2,2)$
J. None of these

S163) (HW-85, T) For the first terms affiliates with x, does $x=|y|$ define a function?
K. Yes
L. No

SM-64
(5164) (HW-85,B) what is a correct next line that follows from $x^{2}-6 x+y^{2}+12 y=-45$?

$$
N \cdot\left(x^{2}-6 x+9\right)+\left(y^{2}+12 y+36\right)=-45
$$

P. $\left(x^{2}-6 x+9\right)+\left(y^{2}+12 y+36\right)=-9-36-45$
Q. $\left(x^{2}-6 x+9\right)+\left(y^{2}+12 y+36\right)=9+36-45$
R. None of these.
(S165) (HM $-85, B$) What points satisfy $(x-3)^{2}+(y+6)^{2}=0$?
5 . Only the point $(3,-6)$.
T. Only the point $(-3,+6)$.
U. No points.
X. None of these.
(S166)(HW-86) Is the graph at the right the graph of a function?
y. Yes

N. No.

$$
S M-65
$$

($\mathrm{H} \omega-86, \mathrm{~B}$)
5167 Is the graph at the right the graph of a function?
Y. Yes
N. No

5168 (Hw-87,m) $f(x)=\frac{x}{|k|-2}$
What is the domain of f ?
S. $\{x \mid x \neq 2$ and $x \neq-2\}$
T. $\{x \mid x \neq 0\}$
U. $\{x \mid x \neq 2\}$
X. None of these
(S169) (HW-87, B) what values make $x^{2}+x-1=0$?
A. ± 1
B. $\frac{-1 \pm \sqrt{5}}{2}$
C. $\frac{-1 \pm \sqrt{-3}}{2}$
D. None of these.

$$
5 M-66
$$

S170 (HW-88, T) Find the domain for

$$
f(x)=\frac{1}{\sqrt{7-6 x}}
$$

F. $\{x \mid x>7 / 6\}$
G. $\left\{x \left\lvert\, x<\frac{6}{7}\right.\right\}$
H. $\{x \mid x>6 / 7\}$
J. None of these.
(S171) (HW-88,B) What is the domain for the function at the right?

$$
\begin{aligned}
& K \cdot[1,2] \\
& L \cdot[-1,1] \\
& M \cdot[-1,1) \\
& \text { P. }[1,2)
\end{aligned}
$$

Q. None of these.
(S172) (HW-88, B) What is the range for the function at the right?
R. $[1,2]$
S. $[-1,1]$

τ. $[-1,1)$
U. $[1,2)$
X. None of these
sm-67
(S173) (HW-89) What is the standard form for the parabola $y=-2 x^{2}+3 x-7$?
A. $y=-2\left(x+\frac{3}{4}\right)^{2}-\frac{65}{8}$
B. $y=-2\left(x-\frac{3}{4}\right)^{2}+\left(-\frac{47}{8}\right)$
C. $y=-2\left(x-\frac{3}{2}\right)+\left(\frac{-47}{8}\right)$
D. None of these
(s174) (Hw-89) What is the vertex for the parabola $y=-2 x^{2}+3 x-7$?

$$
\begin{aligned}
& \text { F. }\left(\frac{3}{4},-\frac{47}{8}\right) \\
& \text { G. }\left(-\frac{3}{4}, \frac{47}{8}\right) \\
& H \cdot\left(\frac{3}{2},-\frac{47}{8}\right)
\end{aligned}
$$

J. None of these
(5175) (HW-89) What is the range for $f(x)=-2 x^{2}+3 x-7$? Hint, standard form and graph.
K. $(-\infty, \infty)$
L. $\left(-\infty, \frac{47}{8}\right]$
M. $\left(-\infty, \frac{-47}{8}\right]$
P. $\left(-\infty, \frac{65}{8}\right]$
Q. None of these
$S m-68$
(S176) (HW-90, T) What is the range
for $f(x)=\frac{1}{x^{2}+3}$?
R. $\left(0, \frac{1}{3}\right]$
S. $(0,3]$
T. $[0,1 / 3]$
U. $[0, \infty)$
x. None of these.
($1777(H \omega-90, B)$ Find $f\left(\frac{5}{2}\right)$ when f is defined by

$$
\begin{aligned}
f(x) & =0 \text { if } 0 \leq x<1 \\
& =1 \text { if } 1 \leq x<2 \\
& =2 \text { if } 2 \leq x<3 \\
& =3 \text { if } 3 \leq x<4
\end{aligned}
$$

$$
f\left(\frac{5}{2}\right)=
$$

A. $\frac{5}{2}$
B. 0
C. 1
D. 2
E. 3
G. None of these

$$
5 m-69
$$

(5178 (Hw-91,m) The graph of $y=\sqrt{x-2}$ is the graph of $y=\sqrt{x}$ translated
H. right 2
J. left 2
K. up 2
L. down 2
M. None of these.
(s179) (Hw-91,B). The graph of $y=\frac{1}{3} \sqrt{x-2}-1$ is the graph of $y=\frac{1}{3} \sqrt{x-2}$ translated
P. right 1
Q. left 1
R. up 1
S. down 1
T. None of these
S180) (HW-92,T) what is the remainder for the division $2 x - 4 \longdiv { 6 x - 1 7 }$
U. 3
w. -5
X. 29
z. None of these.

$$
5 m-70
$$

(s181) (Hw-92, m) The graph of $y=\frac{-1}{x}$ is the graph of $y=\frac{1}{x}$ reflected about
A. the x-axis
B. the y-axis
C. The line $y=x$
D. None of these.
(S182) $(H w-92, B)$ The graph of $y=-\frac{5}{2}\left(\frac{1}{x-2}\right)$ is the graph of $y=\frac{-5}{2}\left(\frac{1}{x}\right)$ translated
F. right 2
G. left 2
H. up 2
J. down 2
K. None of these
(S183)(HW-92,B) The graph of $y=\frac{-5}{2}\left(\frac{1}{x-2}\right)+3$ is the graph of $y=-\frac{5}{2}\left(\frac{1}{x-2}\right)$ translated
L. right 3
M. left 3
P. up 3
Q. down 3
R. None of these

SM-71
(5184) (HW-92, B) Which is the horizontal asymptote for $y=-\frac{5}{2}\left(\frac{1}{x-2}\right)+3$?
S. $y=2$
T. $y=3$
U. $x=2$
X. $x=3$
z. None of these.
(s185) $(H 1 w-93, T)$ The graph of $f(x)=3 x^{4}-2 x^{2}+7$ is symmetric about
A. The x-axis.
B. the y-axis.
C. the origin
D. None of these
(S186) (HW-93,B) The graph of $-y^{2}=x^{4} y^{6}-y$ is symmetric about
F. the x-axis
G. the y-axis
H. the origin
J. None of these.

SM-72
(5187) (HW-94, T) To check for symmetry about the y-axis in $-y^{2}=x^{4} y^{6}-y$, you check to see that you get an equivalent equation when you substitute in the original equation
K. $-x$ for x and $-y$ for y
L. $-x$ for x
M. - y for y
P. None of these
(s188) (Hw-95) The standard form for the ellipse equation $4 x^{2}+3 y^{2}-8 x-30 y+67=0$ is

$$
\begin{aligned}
& \text { Q. } \frac{(x+1)^{2}}{(\sqrt{3})^{2}}-\frac{(y+5)^{2}}{2^{2}}=1 \\
& \text { R. } \frac{(x+1)^{2}}{(\sqrt{3})^{2}}+\frac{(y+5)^{2}}{2^{2}}=1 \\
& \text { S. } \frac{(x-1)^{2}}{(\sqrt{3})^{2}}-\frac{(y-5)^{2}}{2^{2}}=1 \\
& \text { T. } \frac{(x-1)^{2}}{(\sqrt{3})^{2}}+\frac{(y-5)^{2}}{2^{2}}=1
\end{aligned}
$$

X. None of these.
$5 m-73$
(S189) (Hw-95,T) A correct line that follows from $4\left(x^{2}-2 x\right)+3\left(y^{2}-10 y\right)=-67$ is
A. $4\left(x^{2}-2 x+1\right)+3\left(y^{2}-10 y+25\right)=-67$
B. $4\left(x^{2}-2 x+1\right)+3\left(y^{2}-10 y+25\right)=1+25-67$
C. $4\left(x^{2}-2 x+1\right)+3\left(y^{2}-10 y+25\right)=4+75-67$
D. $4\left(x^{2}-2 x+1\right)+3\left(y^{2}-10 y+25\right)=-1-25-67$
E. $4\left(x^{2}-2 x+1\right)+3\left(y^{2}-10 y+25\right)=-4-75-67$
H. None of these

S190 (HW-95,96) Name a vertex for the ellipse $\frac{(x-1)^{2}}{(\sqrt{3})^{2}}+\frac{(y-5)^{2}}{2^{2}}=1$

Jo $(1,5)$
K. $(-1,-5)$
L. $(0, \sqrt{3})$
$M .(0,2)$
P. $(-\sqrt{3}, 5)$
Q. $(1-\sqrt{3}, 5)$
R. $(\sqrt{3}, 2)$
S. $(1+\sqrt{3}, 0)$
T. None of these.

$$
5 m-74
$$

(S191) (HW-96, M) A correct line that follows from $16\left(x^{2}+4 x\right)-9\left(y^{2}+6 y\right)=161 \mathrm{ks}$
A. $16\left(x^{2}+4 x+4\right)-9\left(y^{2}+6 y+9\right)=161$
B. $16\left(x^{2}+4 x+4\right)-9\left(y^{2}+6 y+9\right)=4-9+161$
C. $16\left(x^{2}+4 x+4\right)-9\left(y^{2}+6 y+9\right)=64-81+161$
D. $16\left(x^{2}+4 x+4\right)-9\left(y^{2}+6 y+9\right)=64+81+161$
E. None of these.

S192)(HW-96,B) $16 x^{2}-9 y^{2}+64 x-54 y-161=0$ put in standard form for a hyperbola is

$$
\begin{aligned}
& H \cdot \frac{(x-2)^{2}}{3^{2}}-\frac{(y-3)^{2}}{4^{2}}=1 \\
& \text { J. } \frac{(x-[-2])^{2}}{3^{2}}-\frac{(y-[-3])^{2}}{4^{2}}=1 \\
& \text { K. } \frac{(y-3)^{2}}{4^{2}}-\frac{(x-2)^{2}}{3^{2}}=1 \\
& \text { L. } \frac{(y-[-3])^{2}}{4^{2}}-\frac{(x-[-2])^{2}}{3^{2}}=1 \\
& M \frac{(y-3)^{2}}{3^{2}}-\frac{(x-2)^{2}}{4^{2}}=1
\end{aligned}
$$

P. None of these.

$$
S M-75
$$

(5193) (Hw-97) Name a vertex for the hyperbola $\frac{(x+2)^{2}}{9}-\frac{(y+3)^{2}}{16}=1$
Q. $(-2,-3)$
R. $(3,4)$
S. $(1,-3)$
T. $(-1,-3)$
w. None of these
s194) (HW-99) Let $g(x)=\frac{x}{(4-x)^{\frac{1}{3}}}$ and

$$
h(x)=\frac{1}{2 x^{3}} \cdot \operatorname{dom}(g h)=
$$

A. $\{x \mid x \neq 4$ and $x \neq 0\}$
B. $\{x \mid x \neq 4\}$
C. $\{x \mid x \neq 0\}$
D. None of these.
(S195) (Hw-99) Let $g(x)=\frac{x}{(4-x)^{\frac{1}{3}}}$ and

$$
h(x)=\frac{1}{2 x^{3}} \text {. Is } \operatorname{dom}(g h)=\operatorname{dom}\left(\frac{g}{h}\right) \text { ? }
$$

Y. Yes
N. No

Sm-76
s196. $(H \omega-100, \tau) f(x)=\sqrt{4-3 x} \cdot \operatorname{dom}(f)=$

$$
\text { F. }[4 / 3, \infty)
$$

G. $\left(-\infty, \frac{4}{3}\right]$
H. $\left(-\infty, \frac{3}{4}\right]$
J. $\left[\frac{3}{4}, \infty\right)$
K. None of these.
(S197)(Hw-100,m) $h(x)=\sqrt{2-x} . \operatorname{dom}(h)=$
L. $(-\infty, 2]$
M. $[2, \infty)$
P. $\{2\}$
Q. None of these.
(s198) (Hw-100) Composition of function fond h.
The domain of f composition h is
R. $\{x \mid x \varepsilon \operatorname{dom}(f)$ and $x \varepsilon \operatorname{dom}(h)\}$
S. $\{x \mid f(x) \varepsilon \operatorname{dom}(h)$ and $x \varepsilon \operatorname{dom}(f)\}$
T. $\{x / f(x) \varepsilon \operatorname{dom}(h)$ and $h(x) \varepsilon \operatorname{dom}(f)\}$
$W \cdot\{x / x \varepsilon \operatorname{dom}(h)$ and $h(x) \varepsilon \operatorname{dom}(f)\}$
X. None of these.
$5 m-77$
s199) $(H w-100) f(x)=\sqrt{4-3 x}, h(x)=\sqrt{2-x}$ $\operatorname{dom}(f \circ h)=$
A. $\left[\frac{2}{9}, 2\right]$
B. $\left[\frac{4}{3}, 2\right]$
C. $(-\infty, 2]$
D. None of these.
(S200)(Hw-101,M) $4 x=b(2+7 x)+c \quad b=$
F. $\frac{7}{4}$
H. 2
J. -3
K. None of these
(5201)(Hw-101) $H(x)=\sqrt{2+7 x}+5(2+7 x)^{1 / 3}+4 x$

Find f, g such that $H(x)=(f \circ g)(x)$
L. $f(x)=2+7 x$ and $g(x)=\sqrt{x}+5 x^{1 / 3}+4 x$
M. $f(x)=\sqrt{x}+5 x^{\frac{1}{3}}+\frac{4}{7} x-\frac{8}{7}$ and $g(x)=2+7 x$
P. $f(x)=\sqrt{x}+5 x^{\frac{1}{3}}+\frac{4}{7} x$ and $g(x)=2+7 x$
Q. $f(x)=2+7 x$ and $g(x)=\sqrt{x}+5 x^{1 / 3}+\frac{4}{7} x-\frac{8}{7}$
R. $f(x)=2+7 x$ and $g(x)=\sqrt{x}+5 x^{1 / 3}+\frac{4}{7} x$
S. None of these.
$5 m-78$
S202 (HW-102, T) f is a 1 to 1 function.

$$
f^{-1}(5)=3 \text { so } f(3)=
$$

T. 5
U. $(5,3)$
x. $(3,5)$
z. None of these.
(3203) (Hw-102,m) The graph of $f(x)=-2 x^{2}+4 x+5$ is a parabola opening down so
A. f is not I to l since a horizontal line intersects the graph twice.
B. f is not a function since a horizontal line intersects the graph twice.
c. f is one to one since any vertical line intersects the graph at most once.
D. None of these.
(S204) (HW-102, B) which is the graph of $f(x)=2|x-3|+1$, for $x>3$?

H. None of these

SM -79
(5205) (HW-103, m) Which is a correct next line after $y=-2\left(x^{2}-2 x\right)+5$?
J. $y=-2\left(x^{2}-2 x+1\right)+5$
K. $y=-2\left(x^{2}-2 x-1\right)+5$
L. $y=-2\left(x^{2}-2 x+1\right)+5-1$
M. $y=-2\left(x^{2}-2 x+1\right)+5+2$
P. $y=-2\left(x^{2}-2 x+1\right)+5-2$
Q. None of these
(5206) (HW-103, T) Which is a correct next line after $y=-2 x^{2}+4 x+5$?
R. $y=-2\left(x^{2}+4 x\right)+5$
S. $y=-2\left(x^{2}-2 x\right)+5$
T. $y=-2\left(x^{2}+2 x\right)+5$
U. $y=-2\left(x^{2}-2 x\right)+\frac{5}{2}$
x. $y=-2\left(x^{2}+2 x\right)+\frac{5}{2}$
z. None of these
$5 M-80$
5207 (HW-103) $f(x)=-2 x^{2}+4 x+5 \quad x>1$
Find a formula for $f^{-1}(x)$. $\leftarrow f$ inverse of x
A. $\quad f^{-1}(x)=1+\sqrt{\frac{x-7}{-2}}$
B. $\quad f^{-1}(x)=1+\sqrt{\frac{x-7}{2}}$
C. $\frac{1}{-2 x^{2}+4 x+5}$
D. $f^{-1}(x)=1-\sqrt{\frac{x-7}{-2}}$
E. $f^{-1}(x)=1-\sqrt{\frac{x-7}{2}}$
F. None of these
S208 (HW-105) Which of the following is the graph of $y=\left(\frac{1}{e}\right)^{x}$?
H.

Jo

M. None of these

$$
5 m-81
$$

(5209) (HW-105, M) which of the following is the approximate value of $\left(\frac{1}{e}\right)^{-1}$ to the nearest tenth?
P. .37
Q. 2.7
R. 2.3
S. None of these

S210 (HL $105, B$) $e^{-2 x}=$
T. $\left(\frac{1}{e^{2}}\right)^{x}$
U. $\left(e^{-2}\right)^{-x}$
X. $\left(e^{\frac{1}{x}}\right)^{2}$
z. None of these
(S211)(HW 106,T) $3 x-4=$
A. $3(x-4)$
B. $3\left(x+\frac{4}{3}\right)$
C. $3\left(x-\frac{3}{4}\right)$
D. $3\left(x-\frac{4}{3}\right)$
E. None of these

$$
5 m-82
$$

$5212(H \omega-106, \tau) \quad 2^{3\left(x-\frac{4}{3}\right)}=$
H. $\left(2^{\frac{1}{3}}\right)^{x-\frac{4}{3}}$
J. $\left(2^{3}\right)^{x-\frac{4}{3}}$
K. $\left(2 x-\frac{4}{3}\right)^{3}$
L. None of these
S213($\mathrm{HW}-106, M$) The graph of $y=8^{x-\frac{4}{3}}$
is the graph of $y=8^{x}$ translated
M. left $\frac{4}{3}$
P. right $4 / 3$
Q. up $4 / 3$
R. down $4 / 3$
S. None of these

S214)(HW-106, M, B) The graph of $y=8^{x-\frac{4}{3}}+1$
is the graph of $y=8^{x-\frac{4}{3}}$ translated
T. left 1
U. night I
W. up I
X. down 1
z. None of these.

$$
S M-83
$$

5215 (HW-106, B) The horizontal asymptote for $y=8^{x-\frac{4}{3}}+1$ is
A. $y=1$
B. $y=4 / 3$
C. $x=1$
D. $x=4 / 3$
E. None of these

S216 $(H W-107, T) \log _{2}\left(\frac{1}{8}\right)=$
H. -1
J. 3
K. -3
L. None of these.
(S217)(HW-107,T) $\log \frac{1}{1000}=$
M. -1
P. 3
Q. -3
R. None of these

$$
5 m-84
$$

(5218)(HW-107, $M) \log _{x} e^{3}=3 \quad x=$
S. e
T. 3
W. 10
X. 1
z. None of these
(S219) $(H W-107, M) \log _{x} \frac{1}{125}=-3 \quad x=$
A. 125
B. 10
C. 5
D. 3
E. None of these.

S220(HW-107, B) Exponential form $2^{-4}=\frac{1}{16}$
The log form is
H. $\log _{2}-4=\frac{1}{16}$
J. $\log _{2} \frac{1}{16}=-4$
K. $\log _{4} \frac{1}{16}=-2$
L. None of these
Sm-85
(S221) (HW-107, B) Eponential form $e^{\frac{1}{2}}=\sqrt{e}$
The \log form is
M. $\log _{e} \frac{1}{2}=\sqrt{e}$
P. $\log _{\frac{1}{2}} e=\sqrt{e}$
Q. $\log _{e} e^{\frac{1}{2}}=\sqrt{e}$
R. None of these.
(S222)(HW-107,B) Log form is $\log \frac{1}{\sqrt{10}}=-\frac{1}{2}$
The exponential form is.
S. $10^{-\frac{1}{2}}=\frac{1}{\sqrt{10}}$
T. $\left(-\frac{1}{2}\right)^{10}=\frac{1}{\sqrt{10}}$
W. $-10^{\frac{1}{2}}=\frac{1}{\sqrt{10}}$
X. None of these
(5223)(HW-108,M) The graph of $y=\log x$ is
A.
 B.

C.

D.

E. None of these.

SM-86
S224)(HW-108, M) The graph of $y=-\log x$ is the graph of $y=\log x$ reflected about the
H. x-axis.
J. y-axis.
K. the line $y=x$.
L. None of these.
(5225)(HW-108, M) The graph of $y=-3 \log (x+2)$ is the graph of $y=-3 \log x$ translated
m. right 2
P. left 2
Q. up 2
R. down 2
5. None of these
(S226) (H1W-108, B) The graph of $y=-3 \log (-x+2)-1$ is the graph of $y=-3 \log (x+2)-1$ reflected about
T. the x-axis.
U. the y-axis.
w. the line $y=x$.
X. the origin.
z. None of these.

$$
5 m-87
$$

S227)(HW-109,T) $x^{2}>\frac{5}{2}$ if and only if.
A. $x>\sqrt{5 / 2}$
B. $x>\sqrt{5 / 2}$ or $x<-\sqrt{5 / 2}$
C. $x>\sqrt{5 / 2}$ AND $x<-\sqrt{5} / 2$
D. None of these.
(S228) (Hw-109, $) f(x)=\ln \left(2 x^{2}-5\right) \cdot \operatorname{dom}(f)=$
F. $\left(-\infty,-\sqrt{\frac{5}{2}}\right) \cup\left(\sqrt{\frac{5}{2}}, \infty\right)$
G. $\left(\sqrt{\frac{5}{2}}, \infty\right)$
H. $(-\infty,-\sqrt{5 / 2})$
J. $(-\sqrt{5 / 2}, \sqrt{5 / 2})$
K. None of these.

S229 (HW-109, M) $\log _{2} 3.2=$
L. $\frac{\ln 3.2}{\ln 2}$
M. $\ln 3.2-\ln 2$
P. $\frac{\ln 2}{\ln 3.2}$
Q. $\ln 2-\ln 3.2$
R. None of these.
sm-88
$5230(H \omega-109, B) \ln \frac{\sqrt[3]{x z}}{5 y^{2}}=$
5. $\frac{\ln \sqrt[3]{x z}}{\ln 5 y^{2}}$
T. $\ln \sqrt[3]{x z}-\ln 5 y^{2}$
U. $\frac{\ln \sqrt[3]{x z}}{5 y^{2}}$
X. None of these
S231 (Hw-109,B) $\ln (x z)^{1 / 3}-\left(\ln 5+\ln y^{2}\right)=$
A. $3 \ln (x z)-2(\ln 5+\ln y)$
B. $3 \ln (x z)-\ln 5+2 \ln y$
C. $\frac{1}{3} \ln (x z)-(\ln 5+2 \ln y)$
D. None of these

S232 (Hw-109,B) $\frac{1}{3} \ln x z=$
F. $\frac{1}{3} \ln x+\ln z$
G. $\frac{1}{3} \ln x+z$
H. $\frac{1}{3} x \ln z$
J. $\frac{1}{3} \ln x+\frac{1}{3} \ln z$
K. None of these.

SM-89
(5233)(HW-110T) $5 \ln \left(x^{2}+1\right)=$
L. $\ln \left(x^{2}+1\right)^{5}$
M. $\ln \left(x^{2}+1\right)^{\frac{1}{5}}$
P. $\ln 5\left(x^{2}+1\right)$
Q. None of these
$5234(H \omega-110, T) \ln \left(x^{2}+1\right)^{5}-\ln z^{\frac{1}{2}}+\ln x^{3}-\ln y^{\frac{1}{4}}=$
R. $\ln \left[\left(x^{2}+1\right)^{5}-z^{\frac{1}{2}}\right]+\ln \left[x^{3}-y^{\frac{1}{4}}\right]$
S. $\frac{\ln \left(x^{2}+1\right)^{5}}{\ln z^{1 / 2}}+\frac{\ln x^{3}}{\ln y^{1 / 4}}$
T. $\ln \frac{\left(x^{2}+1\right)^{5}}{z^{1 / 2}}+\ln \frac{x^{3}}{y^{1 / 4}}$
U. None of these
(\$235)(HW-110, B) Which follows from $\ln e^{12 x-1}=\ln 10^{3 x} ?$
$V .(12 x-1) \ln e=3 x \ln 10$
W. $12 x-1 \ln e=3 x \ln 10$
$x \cdot e^{12 x-1} \ln =10^{3 x} \ln$
z. None of these

$$
5 M-90
$$

(5236) HW-110, B) Which follows from $x\left(\ln \frac{e^{12}}{10^{3}}\right)=\ln$?
A. $x=\frac{\ln e}{\ln \frac{e^{12}}{10^{3}}}$
B. $x=\ln \left(\frac{\frac{e}{\frac{e^{12}}{10^{3}}}}{\frac{e^{3}}{}}\right)$
C. $x=\ln e-\frac{e^{12}}{10^{3}}$
D. None of these
(5237)(HW-112) What is the initial setup for synthetic division of $\frac{\frac{3}{2} x^{3}-\frac{5}{2} x^{2}+0 x+1}{x-[-1 / 2]}$?
F. $\quad \frac{1}{2} \frac{3}{2} \quad-\frac{5}{2} \quad 1$
H. $\frac{-\frac{1}{2} \frac{3}{2}-\frac{5}{2} 01}{\frac{3}{2}}$

J $\frac{1}{2}$ 3/2 $-\frac{5}{2}$ ○ 1
K. None of these

$$
5 m-91
$$

(5238 (HW-112,M) For synthetic division, what is the box, $\square_{,}$filled in with in the next step of synthetic division?

$$
-\frac{1}{2} \left\lvert\, \frac{3}{2} \quad-\frac{5}{2} \quad 0 \quad 1\right.
$$

L. $-8 / 6$
M. $\frac{15}{8}$
P. $\frac{13}{4}$
Q. $\frac{-13}{4}$
R. $-\frac{3}{4}$
S. $3 / 4$
T. None of these

S239 (Hw-112,T) $2 x+1=$
A. $2(x+1)$
B. $2\left(x+\frac{1}{2}\right)$
C. $2(x+2)$
D. None of these
$5 m-92$
(S240) (HW-112) For the synthetic division below, what is the quotient, Q, without the remainder?

$-\frac{1}{2}$	$\frac{3}{2}$	$\frac{-5}{2}$	0	1
	$-\frac{3}{4}$	$\frac{13}{8}$	$\frac{-13}{16}$	
	$\frac{3}{2}$	$\frac{-13}{4}$	$\frac{13}{8}$	$\frac{3}{16}$

F. $\quad \frac{3}{2} x^{3}-\frac{13}{4} x^{2}+\frac{13}{8} x+\frac{3}{16}$
G. $\frac{3}{2} x^{2}-\frac{13}{4} x+\frac{13}{8}$
H. $\frac{3}{2} x^{3}-\frac{5}{2} x^{2}+0 x+1$
J. $3 / 16$
K. None of these.

5241 (Hw-113) Perform the synthetic division that is set up below. What goes in the place indicated by the arrow?

$$
|44| 1 \quad-145 \quad 143 \quad 145-146
$$

1
L. 1
M. -1
P. 2
Q. -2
Q. None of these.

$$
\begin{gathered}
\text { Sm-93 } \\
\text { S242 }(H W-114 T) \quad x^{4}\left(x^{3}-8\right)-\left(x^{3}-8\right)= \\
\text { S. }\left(x^{3}-8\right)\left(x^{4}-1\right) \\
\text { T. }\left(x^{3}-8\right) x^{4} \\
\text { U. }\left(x^{4}-1\right)\left(x^{3}-8\right)
\end{gathered}
$$

X. None of these
$S 243(H w-114, M) x^{2}+1=$
A. $(x-1)(x+1)$
B. $(x+1)(x+1)$
C. $(x-i)(x+i)$
D. $(x+i)(x+i)$
E. None of these.
5244 (HW-115,T) Consider equations a. and b. below:
a. $12 x+4 y=11$
b. $3 x-8 y=-4$ When equation b. is multiplied by -4 and added to equation a. the result is:
$H .-4 y=7$
J. $36 y=7$
K. $\quad 36 y=27$
L. None of these

Sm-94
(5245) (Hw-115, m) Solving $36 y=27$ for y and substituting that value for y into $3 x-8 y=-4$ gives the equation
M. $3 x-6=-4$
P. $\quad 3 x+6=-4$
Q. $\quad 3 x-\frac{32}{3}=-4$
R. None of these.
(5246) $(H w-115, B)$ Solving $3 x-8 y=-4$
for x gives
S. $x=\frac{3}{8} y-\frac{3}{4}$
T. $x=\frac{8}{3} y-\frac{4}{3}$
U. $x=8 / 3 y-\frac{3}{4}$
X. None of these.
(S247)(HW-115, M) What is the x value of the solution to:

$$
\begin{aligned}
12 x+4 y & =11 \\
3 x-8 y & =-4
\end{aligned} ?
$$

A. $\frac{3}{4}$
B. $3 / 2$
C. $2 / 3$
D. $4 / 3$
E. None of these.

SM-95
(5248 (Hw-115,116) Substituting $\frac{8}{3} y-\frac{4}{3}$
for x in the equation $12 x+4 y=11$ gives
H. $96 y-48+4 y=11$
J. $\frac{96}{3} y+\frac{48}{3}+4 y=11$
K. $\frac{96}{3} y-\frac{48}{3}+4 y=11$
L. None of these.
(S249) (HW-117,T) what is the solution set
for

$$
\begin{aligned}
& y=\frac{1}{7}+\frac{2}{7} x \\
& 4 x-14 y=6
\end{aligned}
$$

M. $\left\{\left(\frac{6}{7}, \frac{-3}{7}\right)\right\}$
P. $\left\{\left(\frac{7}{6}, \frac{-5}{7}\right)\right\}$
Q. $\left\{\left(\frac{5}{7}, \frac{-14}{3}\right)\right\}$
R. None of these
(5250 (Hw-118, T) Adding the 2 equations below gives $\begin{aligned} 4 x-10 y+6 z & =-44 \\ 21 x+3 y-6 z & =-27\end{aligned}$

$$
21 x+3 y-6 z=-27
$$

S. $25 x-7 y=-71$
T. $\quad 17 x+13 y=17$
U. $17 x-7 y=-71$
x. None of these
$5 M-96$
(5251)(Hw-118) The x-value of the only solution to the system of equations below is:

$$
\begin{aligned}
& 2 x-5 y+3 z=-22 \\
& 7 x+y-2 z=-9 \\
& 5 x+3 y+4 z=-5
\end{aligned}
$$

A. 2
B. 3
C. -2
D. -3
E. None of these.

5252 (HW-118,T) For the 2 equations

$$
\begin{aligned}
& 2 x-5 y+3 z=-22 \\
& 7 x+y-2 z=-9
\end{aligned}
$$

z can be elimated by multiplying the list equation by 2 and the second equation by $a_{n} \theta$ then adding those equations together. The blank is filled in with
H. -2
J. -3
K. 3
L. 2
M. None of these

$$
5 m-97
$$

(5253 (HW-118,T) When $2 x-5 y+3 z=-22$
is multiplied by 2 and $7 x+y-2 z=-9$ is multiplied by 3 and the new equations are added together, what variable $1 s$ eliminated?
P. K
Q. y
R. z
S. None of these
(5254 (Hw-120, m) The graph of $2 x-y \leq 2$ is
T.
ω.

U

z. None of these

$$
5 M-98
$$

(S255)(HW-120, B) The graph of $-3 x+2 y<12$ is
A.

C.

B.

D. None of these
(5256) (HW-121,122) Which is a vertex for the system $\left\{\begin{array}{c}2 x-y \leq 2 \\ -3 x+2 y<12 \\ 2 x+y \geq 0\end{array}\right\}$?
F. $\left(\frac{1}{2}, \frac{3}{2}\right)$
G. $\left(-\frac{1}{2},-1\right)$
H. $\left(\frac{1}{2}, 1\right)$
J. $\left(\frac{1}{2},-1\right)$
K. None of these

$$
5 m-99
$$

(5257) (HW-122) Which is a vertex for the system $\left\{\begin{array}{c}2 x-y \leq 2 \\ -3 x+2 y<12 \\ 2 x+y \geq 0\end{array}\right\}$?
L. $(16,20)$
M. $(16,30)$
P. $(20,16)$

Q $(30,16)$
R. None of these?

ANSWER SHEET-SUMPPLEMENTARY MATERIALS
(51) d
(52) g
(53) K
(34) t
(55) t
(56) q
(57) t
(58) C
(59) g
(S10) l
(Sii) r
(S12) N
(s13) b
(S14) f
(S15) p
sib W
(517) N
(S18) W
(S19) θ
(520) T
(521) ω
(522) B
(523) E
(524) P
(525) T
(526) z
(527) C

S28 F
S29) K
$S 30 R$
(S31)N
532 I
(533) L
(s34) R
(S35 S
S36 D
(537) N
(538 P
(539 T
540 B
(S41)E
(542) H
(543) S
(544) X
(545)C

S46 F
(547) N
(S48) X
(549 C (569 L (589 \mp

s56) K
(557) M
(558 T
(559 B
(560) J
(561)K (581) H
(562)S (582 K
(563) A (583) U
(S65)L (585) G
(566)S 586 L
(567) C 587 S
(568) E $588 C$
$570 Q(590 Q$
(577) H 597 F
(578)K 598 M
$579) S$
580 S
5100 C

Asm-3
ANSWER SHEET-SUPPLEMENTARY MATERIALS (CONT.)

